

CONSMB006-G SMB Plug PCB Through Hole Connector

The CONSMB006-G is an SMB Plug PCB through hole connector designed for reflow-solder mounting directly to a printed circuit board. Operating from 0 GHz to 4 GHz, the CONSMB006-G combines superior performance, compact size, and a convenient snap-on mating interface to provide a reliable, easy-to-use connector. Additionally, all Linx connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

- 0 to 4 GHz operation
- Gold plating
 - Superior corrosion resistance
- SMB Plug (female socket) connection
 - Gold plated beryllium copper center contact
- Direct PCB attachment
- Reflow- or hand-solder assembly

Applications

- LPWA
 - LoRaWAN®, Sigfox®, WiFi HaLow™ (802.11ah)
- Cellular IoT
 - LTE-M (Cat-M1), NB-IoT
- Cellular
 - 5G/4G LTE/3G/2G
- GNSS
 - GPS, Galileo, GLONASS, BeiDou, QZSS
- Industrial/Commercial/Enterprise
- ISM

Table 1. Electrical Specifications

Impedance	50 Ω	
Frequency Range	0 to 4	- GHz
Voltage Rating	750 V	RMS
Contact Resistance	Center: \leq 6.0 m Ω Outer: \leq 1.0 m Ω	
Select Frequencies	400 MHz to 960 MHz	2.4 GHz
Insertion Loss (dB max)	-0.20	-0.23
VSWR (max)	1.5	1.2

Ordering Information

Part Number	Description	
CONSMB006-G	SMB Plug (female socket) PCB through hole connector	

CONSMB006-G Datasheet

Product Dimensions

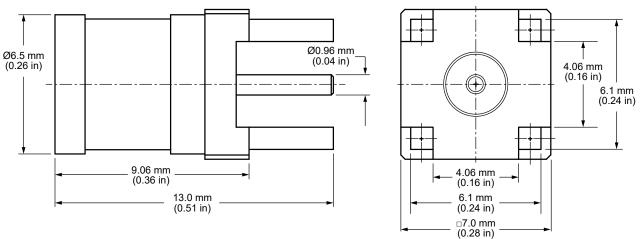


Figure 1. Product Dimensions for the CONSMB006-G Connector

Table 2. Connector Components

Model	CONSMB006-G	
Connector Part	Material	Finish
Connector Body	Brass	Gold
Center Contact (socket)	Beryllium Copper	Gold
Insulator	PTFE	_

Recommended PCB Footprint

Figure 2 shows the connectors recommended PCB footprint and through hole sizes.

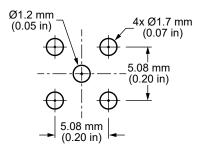


Figure 2. Recommended PCB Dimensions for the CONSMB006-G

Connector Performance

Table 3 shows insertion loss and VSWR values for the CONSMB006-G connector at commonly used frequencies.

Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line. VSWR describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency.

Table 3. Insertion Loss and VSWR for the CONSMB006-G Connector

Band	Low-Band Cellular/ ISM/LPWA	GNSS	Midband Cellular	WiFi/ISM
Frequency Range	400 MHz to 960 MHz	1164 MHz to 1609 MHz	1427 MHz to 5000 MHz	2.4 GHz
Insertion Loss (dB max)	-0.20	-0.28	-1.41	-0.23
VSWR (max)	1.5	1.6	2.9	1.2

Table 4. Mechanical Specifications

Model	CONSMB006-G	
Mounting Type	PCB Through Hole	
Fastening Type	Snap-on Coupling	
Interface in Accordance with	MIL-STD-348A	
Connector Durability	500 cycles min.	
Weight	1.9 g (0.07 oz)	

Table 5. Environmental Specifications

MIL-STD, Method, Test Condition		
Corrosion (Salt spray) MIL-STD-202 Method 101 test condition B		
Thermal Shock	MIL-STD-202 Method 107 test condition B	
Vibration	MIL-STD-202 Method 204 test condition B	
Mechanical Shock	MIL-STD-202 Method 213 test condition I	
Temperature Range	-65 °C to +165 ° C	
Environmental Compliance	RoHS	

CONSMB006-G Datasheet

Reflow Solder Profile

Figure 3 shows the time and temperature data for reflow soldering the connector to a PCB.

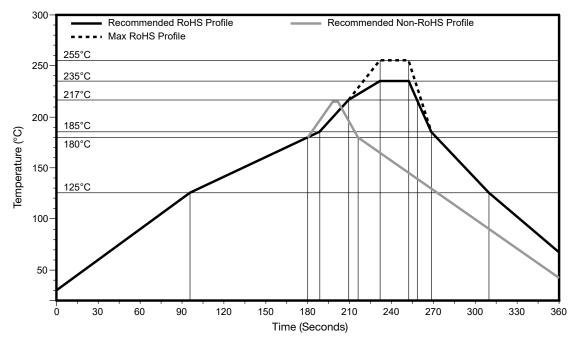


Figure 3. Recommended Reflow Solder Profile

Packaging Information

The CONSMB006-G connector is placed in sealed trays of 100 pcs. Trays are packaged in cartons of 1700 pcs. Distribution channels may offer alternative packaging options.

Connector & Adapter Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the connector. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$VSWR = \frac{10^{\left[\frac{Return\ Loss}{20}\right] + 1}}{10^{\left[\frac{Return\ Loss}{20}\right] - 1}}$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component $P_{\scriptscriptstyle T}$ and the power transmitted to the load after the insertion of the component $P_{\scriptscriptstyle R}$.

$$Insertion \ Loss \ (dB) = 10 \log_{10} \frac{P_T}{P_R}$$

CONSMB006-G Datasheet

Website: http://linxtechnologies.com

Linx Offices: 159 Ort Lane, Merlin, OR, US 97532

Phone: +1 (541) 471-6256

E-MAIL: info@linxtechnologies.com

Linx Technologies reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Wireless Made Simple is a registered trademark of Linx Acquisitions LLC. LoRaWAN is a registered trademark of Semtech Corporation. Sigfox is a registered trademark of SIGFOX. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Copyright © 2020 Linx Technologies

All Rights Reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Connectors / Coaxial Connectors category:

Click to view products by Linx Technologies manufacturer:

Other Similar products are found below:

8915-1511-000 89674-0827 6001-7071-019 6002-7051-003 6002-7551-202 6059674-1 619550-1 630059-000 M39030/3-01N 6500-7071046 6769 CX050L2AQ 7002-1542-011 7004-1512-000 7009-1511-004 7010-1511-000 7029-1511-060 7101-1541-010 7101-1571-002
7105-1521-002 7145-1521-002 7203-1571-003 7209-1511-011 7210-1511-015 7210-1511-019 73137-5015 73216-2241 7325-1512-000
73404-2300 7405-1521-005 7405-1521-802 7406-1521-005 8527 8547 FS11V 8808-1511-001 9049-9513-000 9074-9513-000 9101-9573002 910A205F 9130-9573-002 PL11SC-026 PL375-33 PL40-5 PL71-9 PL74C-221 PL75MC-217 PL803-7 980-8666-005 1200690078