CSG-UFFR-100-UFFR
 U.FL Plug to U.FL Plug Cable Assembly

The CSG-UFFR-100-UFFR cable assembly provides a U.FL/MHF1-type connection on 100 mm of 1.37 mm coaxial cable.

Operating from 0 Hz to 6 GHz , the CSG-UFFR-100-UFFR cable assembly combines superior performance, compact size, and a convenient snap-on mating interface to provide a reliable, easy-to-use cable assembly. Additionally, all Linx coaxial cables and connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

Features

- 0 Hz to 6 GHz operation
- U.FL-type plug (female socket)
- Gold plated brass
- Right-angle connection
- U.FL-type plug (female socket) compatible with
- MHF1
- AMC
- UMCC
- 1.37 mm coaxial cable

Applications

- LPWA
- LoRaWAN®, Sigfox ${ }^{\oplus}$
- WiFi HaLow™ (802.11ah)
- Cellular IoT - LTE-M (Cat-M1), NB-IoT
- Cellular - 5G/4G LTE/3G/2G
- PC, LAN
- ISM - Bluetooth ${ }^{\circledR}$, ZigBee ${ }^{\circledR}$
- GNSS - GPS, Galileo, GLONASS, BeiDou, QZSS
- Automotive, Industrial, Commercial, Enterprise

Table 1. Electrical Specifications

Parameter	Value
Insertion Loss (dB max)	1.0
VSWR (max)	1.3
Impedance	50Ω
Insulation Resistance	$500 \mathrm{M} \Omega$ min.

Ordering Information

Part Number	Description
CSG-UFFR-100-UFFR	U.FL/MHF1-type plug (female socket) to U.FL/MHF1-type plug (female socket) on 100 $\mathrm{~mm}(3.9 \mathrm{in})$ of 1.37 mm coaxial cable

Product Dimensions

Figure 1. Product Dimensions for the CSG-UFFR-100-UFFR Cable Assembly

Table 2. Cable Assembly Components

Item \#	Description	Material	Finish
$\mathbf{1}$	Connector, U.FL-type plug (female socket)	Brass	Gold
$\mathbf{2}$	1.37 mm coaxial cable	1.37 mm coaxial	Black
$\mathbf{3}$	Connector, U.FL-type plug (female socket)	Brass	Gold

Table 3. Cable Assembly Mechanical Specifications

Parameter	Connector A U.FL-type plug (female socket)	Connector B U.FL-type plug (female socket)
Fastening Type	Snap-on coupling	Snap-on coupling
Connector Durability	30 cycles min.	30 cycles min.
Weight	$0.6 \mathrm{~g}(0.21 \mathrm{oz})$	

Coaxial Cable Specifications

Figure 2. Coaxial Cable Cutaway Diagram

Table 4. Coaxial Cable Material Specifications for 1.37 mm Cable

1.37 mm Coax	Material	Dimensions
Inner-Conductor	Silver plated copper, 7 strand, 32 AWG	$\varnothing 0.306 \mathrm{~mm}(0.012 \mathrm{in})$
Dielectric	FEP, clear	$\varnothing 0.90 \mathrm{~mm}(0.035 \mathrm{in})$
Outer-Conductor	Silver plated copper braid, coverage 90%	$\varnothing 1.13 \mathrm{~mm}(0.044 \mathrm{in})$
Jacket	FEP, black	$\varnothing 1.37 \mathrm{~mm}(0.054 \mathrm{in}) \pm 0.05 \mathrm{~mm}$

Table 5. Coaxial Cable Electrical and Physical Specifications for 1.37 mm Cable

Parameter	Value					
Rated Temp Voltage	$200{ }^{\circ} \mathrm{C}$					
Spark Test	2.5 kV					
Insulation	Unaged	Tensile Strength	2500 psi min. ($1.76 \mathrm{~kg} / \mathrm{mm}^{2}$)			
		Elongation	200\% min.			
	Aged	Tensile Strength	Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232{ }^{\circ} \mathrm{C}\right.$)			
		Elongation	Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232{ }^{\circ} \mathrm{C}\right.$)			
Jacket	Unaged	Tensile Strength		2500 psi min. ($1.76 \mathrm{~kg} / \mathrm{mm}^{2}$)		
		Elongation		200\% min.		
	Aged	Tensile Strength		Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232{ }^{\circ} \mathrm{C}\right)$		
		Elongation		Unaged min. $75 \%\left(168\right.$ hrs $\times 232{ }^{\circ} \mathrm{C}$)		
Nominal Impedance	$50 \pm 3 \Omega$					
Nominal Capacitance	$96 \pm 3 \mathrm{pF} / \mathrm{m}$					
Nominal Velocity of Propagation	70\%					
VSWR (0 to 6 GHz)	≤ 1.3					
Flame Test	VW-1 OK					
Attenuation (dB/1M)	$\begin{gathered} 1.0 \mathrm{GHz} \\ \leq 1.7 \end{gathered}$	$\begin{gathered} 2.0 \mathrm{GHz} \\ \leq 2.5 \end{gathered}$	$\begin{gathered} 3.0 \mathrm{GHz} \\ \leq 3.0 \end{gathered}$	$\begin{gathered} 4.0 \mathrm{GHz} \\ \leq 3.5 \end{gathered}$	$\begin{gathered} 5.0 \mathrm{GHz} \\ \leq 4.0 \end{gathered}$	$\begin{gathered} \text { 6.0 GHz } \\ \leq 4.5 \end{gathered}$
Minimum Inside Bend radius	5.5 mm (0.22 in)					

Insertion Loss
Figure 3 shows the Insertion Loss for the CSG-UFFR-100-UFFR cable assemblies. Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line.

Figure 3. Insertion Loss for the CSG-UFFR-100-UFFR Cable Assemblies
VSWR
Figure 4 provides the voltage standing wave ratio (VSWR) across the cable assembly's bandwidth for the CSG-UFFR-100-UFFR cable assemblies. VSWR describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency.

Figure 4. VSWR for the CSG-UFFR-100-UFFR Cable Assemblies

Packaging Information

The CSG-UFFR-100-UFFR cable assembly is packaged in a clear plastic bag, in quantities of 100 . Distribution channels may offer alternative packaging options.

Cable Assembly Definitions and Useful Formulas

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$
\text { VSWR }=\frac{10\left[\frac{[\text { Return Loss }}{20}\right]+1}{10\left[\frac{\text { Return Loss }}{20}\right]-1}
$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component P_{T} and the power transmitted to the load after the insertion of the component P_{R}.

$$
\text { Insertion Loss }(\mathrm{dB})=10 \log _{10} \frac{P_{T}}{P_{R}}
$$

Website:	http://linxtechnologies.com
Linx Offices:	159 Ort Lane, Merlin, OR, US 97532 +1 (541) 471-6256
Phone:	
E-MAIL:	info@linxtechnologies.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Cable Assemblies category:
Click to view products by Linx Technologies manufacturer:
Other Similar products are found below :
73-6352-10 73-6353-3 73-6364-6 MDM-21SH011F R285001001 R288940004 145111-05-12.00 1661-C-24 24P104C24J1-012 24P104C24P1-018 24P204C24J1-003 172-2150-EX FCB-3030-ALT 21117-046 21117-050 PCX-24-50 24P103C24P2-003 PTWY-24-78 R285001021 R285426000 R288940003 R288940008 R288940034 MDM-21PH006P-A174 4814-BB-24 5260-72 DLP-COAX1 4814-K-48 115101-09-06.00 MXHT83QE3000 73-6351-25 73-6352-3 73-6353-25 GD0BQ0BQ024.0 1-3636-600-5210 R284C0351060 R288940009 $\underline{\text { R284C0351028 R288940002 MDM-15SH006A 73-6353-10 R285020301W BNC TO SMA Cable MIKROE-274 Minibend-10 Microbend }}$ MTR-11 PT815NN MF53/1x8A_21MXP/11SK/305 Minibend-3 Minibend-6.5

