

# RM Series GPS Receiver Module Data Guide

Wireless made simple®

Warning: Some customers may want Linx radio frequency ("RF") products to control machinery or devices remotely, including machinery or devices that can cause death, bodily injuries, and/or property damage if improperly or inadvertently triggered, particularly in industrial settings or other applications implicating life-safety concerns ("Life and Property Safety Situations").

NO OEM LINX REMOTE CONTROL OR FUNCTION MODULE SHOULD EVER BE USED IN LIFE AND PROPERTY SAFETY SITUATIONS. No OEM Linx Remote Control or Function Module should be modified for Life and Property Safety Situations. Such modification cannot provide sufficient safety and will void the product's regulatory certification and warranty.

Customers may use our (non-Function) Modules, Antenna and Connectors as part of other systems in Life Safety Situations, but only with necessary and industry appropriate redundancies and in compliance with applicable safety standards, including without limitation, ANSI and NFPA standards. It is solely the responsibility of any Linx customer who uses one or more of these products to incorporate appropriate redundancies and safety standards for the Life and Property Safety Situation application.

Do not use this or any Linx product to trigger an action directly from the data line or RSSI lines without a protocol or encoder/decoder to validate the data. Without validation, any signal from another unrelated transmitter in the environment received by the module could inadvertently trigger the action.

All RF products are susceptible to RF interference that can prevent communication. RF products without frequency agility or hopping implemented are more subject to interference. This module does not have a frequency hopping protocol built in.

Do not use any Linx product over the limits in this data guide. Excessive voltage or extended operation at the maximum voltage could cause product failure. Exceeding the reflow temperature profile could cause product failure which is not immediately evident.

<u>Do not make any physical or electrical modifications to any Linx</u> <u>product.</u> This will void the warranty and regulatory and UL certifications and may cause product failure which is not immediately evident.

- 46 Resources
- 47 Notes

Warning: This product incorporates numerous static-sensitive components. Always wear an ESD wrist strap and observe proper ESD handling procedures when working with this device. Failure to observe this precaution may result in module damage or failure.

## **Ordering Information**

| Ordering Information                                                           |                                                  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Part Number                                                                    | Description                                      |  |  |  |  |
| RXM-GPS-RM-x                                                                   | RM Series GPS Receiver Module                    |  |  |  |  |
| MDEV-GPS-RM                                                                    | RM Series GPS Receiver Master Development System |  |  |  |  |
| EVM-GPS-RM                                                                     | RM Series Evaluation Module                      |  |  |  |  |
| x = "T" for Tape and Reel, "B" for Bulk                                        |                                                  |  |  |  |  |
| Reels are 1,000 pieces. Quantities less than 1,000 pieces are supplied in bulk |                                                  |  |  |  |  |

Figure 2: Ordering Information

## **Absolute Maximum Ratings**

| Absolute Maximum Ratings       |            |     |
|--------------------------------|------------|-----|
| Supply Voltage V <sub>CC</sub> | +4.3       | VDC |
| Input Battery Backup Voltage   | +4.3       | VDC |
| VCC_RF Output Current          | 50         | mA  |
| Operating Temperature          | -40 to +85 | °C  |
| Storage Temperature            | -40 to +85 | °C  |

Exceeding any of the limits of this section may lead to permanent damage to the device. Furthermore, extended operation at these maximum ratings may reduce the life of this device.

Figure 3: Absolute Maximum Ratings

## **Electrical Specifications**

| Parameter              | Symbol           | Min. | Тур.  | Max. | Units | Notes |
|------------------------|------------------|------|-------|------|-------|-------|
| Power Supply           |                  |      |       |      |       |       |
| Operating Voltage      | V <sub>cc</sub>  | 3.0  | 3.3   | 4.3  | VDC   |       |
| Supply Current         | I <sub>cc</sub>  |      |       |      |       |       |
| Peak                   |                  |      |       | 44   | mA    | 1     |
| Acquisition            |                  |      | 14    |      | mA    | 1     |
| Tracking               |                  |      | 12    |      | mA    | 1     |
| Standby                |                  |      | 0.135 |      | mA    | 1     |
| Backup Battery Voltage | V <sub>BAT</sub> | 2.0  |       | 4.3  | VDC   |       |
| Backup Battery Current | I <sub>BAT</sub> |      | 6     |      | μΑ    | 2     |

## Pin Assignments

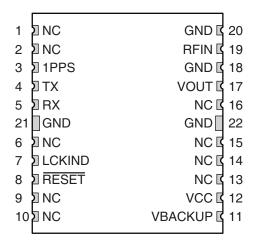



Figure 5: RM Series GPS Receiver Pinout (Top View)

## **Pin Descriptions**

| Pin Descriptio                    | Pin Descriptions |     |                                                                                                       |  |  |
|-----------------------------------|------------------|-----|-------------------------------------------------------------------------------------------------------|--|--|
| Pin Number                        | Name             | I/O | Description                                                                                           |  |  |
| 1, 2, 6, 9, 10,<br>13, 14, 15, 16 | NC               | _   | No electrical connection                                                                              |  |  |
| 3                                 | 1PPS             | 0   | 1 Pulse Per Second                                                                                    |  |  |
| 4                                 | TX               | 0   | Serial output (default NMEA)                                                                          |  |  |
| 5                                 | RX               | 1   | Serial input (default NMEA)                                                                           |  |  |
| 7                                 | LCKIND           | 0   | Lock Indicator. Outputs a 100ms pulse every second when a GPS fix is available.                       |  |  |
| 8                                 | RESET            | I   | Active low module reset. This line is pulled high internally. Leave it unconnected if it is not used. |  |  |
| 11                                | VBACKUP          | Р   | Backup battery supply voltage. This line must be powered to enable the module.                        |  |  |
| 12                                | VCC              | Р   | Supply Voltage                                                                                        |  |  |
| 17                                | VOUT             | 0   | 2.8V output for an active antenna                                                                     |  |  |
| 18, 20, 21, 22                    | GND              | Р   | Ground                                                                                                |  |  |
| 19                                | RFIN             | I   | GPS RF signal input                                                                                   |  |  |

Figure 6: RM Series GPS Receiver Pin Descriptions

## Time To First Fix (TTFF)

TTFF is often broken down into three parts.

Cold: A cold start is when the receiver has no accurate knowledge of its position or time. This happens when the receiver's internal Real Time Clock (RTC) has not been running or it has no valid ephemeris or almanac data. In a cold start, the receiver takes up to 30 seconds to acquire its position.

Warm: A typical warm start is when the receiver has valid almanac and time data and has not significantly moved since its last valid position calculation. This happens when the receiver has been shut down for more than 2 hours, but still has its last position, time, and almanac saved in memory, and its RTC has been running. The receiver can predict the location of the current visible satellites and its location; however, it needs to wait for an ephemeris broadcast (every 30 seconds) before it can accurately calculate its position.

Hot: A hot start is when the receiver has valid ephemeris, time, and almanac data. In a hot start, the receiver takes 1 second to acquire its position. The time to calculate a fix in this state is sometimes referred to as Time to Subsequent Fix or TTSF.

## **Module Description**

The RM Series GPS Receiver module is based on the MediaTek MT3337E chipset, which consumes less power than competitive products while providing exceptional performance even in dense foliage and urban canyons. No external RF components are needed other than an antenna. The simple serial interface and industry standard NMEA protocol make integration of the RM Series into an end product extremely straightforward.

The module's high-performance RF architecture allows it to receive GPS signals that are as low as -161dBm. The RM Series can track up to 22 satellites at the same time. Once locked onto the visible satellites, the receiver calculates the range to the satellites and determines its position and the precise time. It then outputs the data through a standard serial port using several standard NMEA protocol formats.

The GPS core handles all of the necessary initialization, tracking, and calculations autonomously, so no programming is required. The RF section is optimized for low level signals, and requires no production tuning.

## The 1PPS Output

The 1PPS line outputs 1 pulse per second on the rising edge of the GPS second when the receiver has an over-solved navigation solution from five or more satellites. The pulse has a duration of 100ms by default with the rising edge on the GPS second. This line is low until the receiver acquires a 3D fix. The pulse width can be adjusted with a serial command.

The GPS second is based on the atomic clocks in the satellites, which are monitored and set to Universal Time master clocks. This output and the time calculated from the satellite transmissions can be used as a clock feature in an end product. It has a  $\pm 11$ ns accuracy relative to other RM Series GPS receiver modules.

#### **Power Control**

The RM Series GPS Receiver module offers several ways to control the module's power. A serial command puts the module into a low-power standby mode that consumes only 135µA of current. An external processor can be used to power the module on and off to conserve battery power. Standby mode is configured by command 161.

Note: The receiver duty cycle mode was removed from modules with date code 1612 and later.

#### Slow Start Time

The most critical factors in start time are current ephemeris data, signal strength and sky view. The ephemeris data describes the path of each satellite as they orbit the earth. This is used to calculate the position of a satellite at a particular time. This data is only usable for a short period of time, so if it has been more than a few hours since the last fix or if the location has significantly changed (a few hundred miles), then the receiver may need to wait for a new ephemeris transmission before a position can be calculated. The GPS satellites transmit the ephemeris data every 30 seconds. Transmissions with a low signal strength may not be received correctly or be corrupted by ambient noise. The view of the sky is important because the more satellites the receiver can see, the faster the fix and the more accurate the position will be when the fix is obtained.

If the receiver is in a very poor location, such as inside a building, urban canyon, or dense foliage, then the time to first fix can be slowed. In very poor locations with poor signal strength and a limited view of the sky with outdated ephemeris data, this could be on the order of several minutes. In the worst cases, the receiver may need to receive almanac data, which describes the health and course data for every satellite in the constellation. This data is transmitted every 15 minutes. If a lock is taking a long time, try to find a location with a better view of the sky and fewer obstructions. Once locked, it is easier for the receiver to maintain the position fix.

## **NMEA Output Messages**

The following sections outline the data structures of the various NMEA messages that are supported by the module. By default, the NMEA commands are output at 9,600bps, 8 data bits, 1 start bit, 1 stop bit, and no parity.

Six messages are output at a 1Hz rate by default. The ZDA message is supported, but disabled by default. These messages are shown in Figure 8.

| NMEA O | utput Messages                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | Description                                                                                                                                                                                                            |
| GGA    | Contains the essential fix data which provide location and accuracy                                                                                                                                                    |
| GLL    | Contains just position and time                                                                                                                                                                                        |
| GSA    | Contains data on the Dilution of Precision (DOP) and which satellites are used                                                                                                                                         |
| GSV    | Contains the satellite location relative to the receiver and its signal to noise ratio. Each message can describe 4 satellites so multiple messages may be output depending on the number of satellites being tracked. |
| RMC    | Contains the minimum data of time, position, speed and course                                                                                                                                                          |
| VTG    | Contains the course and speed over the ground                                                                                                                                                                          |
| ZDA    | Contains the date and time                                                                                                                                                                                             |

Figure 8: NMEA Output Messages

Details of each message and examples are given in the following sections.

Note: The GLL and VTG messages are enabled by default on modules with date code 1612 and later. They were disabled by default on earlier modules.

## GLL - Geographic Position - Latitude / Longitude

Figure 11 contains the values for the following example:

\$GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A\*52

| Geographic Positio  | Geographic Position – Latitude / Longitude Example |       |                                                                |  |  |
|---------------------|----------------------------------------------------|-------|----------------------------------------------------------------|--|--|
| Name                | Example                                            | Units | Description                                                    |  |  |
| Message ID          | \$GPGLL                                            |       | GLL protocol header                                            |  |  |
| Latitude            | 2503.6319                                          |       | ddmm.mmmm                                                      |  |  |
| N/S Indicator       | N                                                  |       | N=north or S=south                                             |  |  |
| Longitude           | 12136.0099                                         |       | dddmm.mmmm                                                     |  |  |
| E/W Indicator       | Е                                                  |       | E=east or W=west                                               |  |  |
| UTC Time            | 053740.000                                         |       | hhmmss.sss                                                     |  |  |
| Status              | А                                                  |       | A=data valid or V=data not valid                               |  |  |
| Mode                | А                                                  |       | A=autonomous, N=Data not valid, R=Coarse Position, S=Simulator |  |  |
| Checksum            | *52                                                |       |                                                                |  |  |
| <cr> <lf></lf></cr> |                                                    |       | End of message termination                                     |  |  |

Figure 11: Geographic Position – Latitude / Longitude Example

## GSA – GPS DOP and Active Satellites

Figure 12 contains the values for the following example:

\$GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7\*35

| GPS DOP and Active Satellites Example |         |       |                                  |  |
|---------------------------------------|---------|-------|----------------------------------|--|
| Name                                  | Example | Units | Description                      |  |
| Message ID                            | \$GPGSA |       | GSA protocol header              |  |
| Mode 1                                | А       |       | See Figure 13                    |  |
| Mode 2                                | 3       |       | 1=No fix, 2=2D, 3=3D             |  |
| ID of satellite used                  | 24      |       | Sv on Channel 1                  |  |
| ID of satellite used                  | 07      |       | Sv on Channel 2                  |  |
|                                       |         |       |                                  |  |
| ID of satellite used                  |         |       | Sv on Channel N                  |  |
| PDOP                                  | 2.0     |       | Position Dilution of Precision   |  |
| HDOP                                  | 1.1     |       | Horizontal Dilution of Precision |  |
| VDOP                                  | 1.7     |       | Vertical Dilution of Precision   |  |
| Checksum                              | *35     |       |                                  |  |
| <cr> <lf></lf></cr>                   |         |       | End of message termination       |  |

Figure 12: GPS DOP and Active Satellites Example

## RMC - Recommended Minimum Specific GPS Data

Figure 15 contains the values for the following example:

\$GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A\*53

| Recommended Min     | Recommended Minimum Specific GPS Data Example |         |                                                                       |  |  |
|---------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------|--|--|
| Name                | Example                                       | Units   | Description                                                           |  |  |
| Message ID          | \$GPRMC                                       |         | RMC protocol header                                                   |  |  |
| UTC Time            | 053740.000                                    |         | hhmmss.sss                                                            |  |  |
| Status              | А                                             |         | A=data valid or V=data not valid                                      |  |  |
| Latitude            | 2503.6319                                     |         | ddmm.mmmm                                                             |  |  |
| N/S Indicator       | N                                             |         | N=north or S=south                                                    |  |  |
| Longitude           | 12136.0099                                    |         | dddmm.mmmm                                                            |  |  |
| E/W Indicator       | Е                                             |         | E=east or W=west                                                      |  |  |
| Speed over ground   | 2.69                                          | knots   | TRUE                                                                  |  |  |
| Course over ground  | 79.65                                         | degrees |                                                                       |  |  |
| Date                | 100106                                        |         | ddmmyy                                                                |  |  |
| Magnetic Variation  |                                               | degrees | Not available, null field                                             |  |  |
| Variation Sense     |                                               |         | E=east or W=west (not shown)                                          |  |  |
| Mode                | А                                             |         | A=autonomous, E=DR, N= Data not valid, R=Coarse Position, S=Simulator |  |  |
| Checksum            | *53                                           |         |                                                                       |  |  |
| <cr> <lf></lf></cr> |                                               |         | End of message termination                                            |  |  |

Figure 15: Recommended Minimum Specific GPS Data Example

## ZDA - Universal Time and Date

Figure 17 contains the values for the following example:

\$GPZDA,183746.000,22,08,2014,,\*56

| Universal Time and Date Example |            |       |                              |  |
|---------------------------------|------------|-------|------------------------------|--|
| Name                            | Example    | Units | Description                  |  |
| Message ID                      | \$GPZDA    |       | ZDA protocol header          |  |
| UTC Time                        | 183746.000 |       | hhmmss.sss                   |  |
| Day                             | 22         |       | 01 to 31                     |  |
| Month                           | 08         |       | 01 to 12                     |  |
| Year                            | 2014       |       | 1980 to 2079                 |  |
| Local Zone Hour                 |            |       | Offset from UTC; set to null |  |
| Local Zone Minutes              |            |       | Offset from UTC; set to null |  |
| Checksum                        | *56        |       |                              |  |
| <cr> <lf></lf></cr>             |            |       | End of message termination   |  |

Figure 17: Universal Time and Date Example

## Start-up Response

The module outputs a message when it starts up to indicate its state. The normal start-up message is shown below and the message formatting is shown in Figure 18.

#### \$PMTK010,001\*2E<CR><LF>

| Start-up Response Example |                     |                                                                                                                                       |  |  |
|---------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name                      | Example             | Description                                                                                                                           |  |  |
| Message ID                | \$PMTK010           | Message header                                                                                                                        |  |  |
| Message                   | MSG                 | System Message 0 = Unknown 1 = Start-up 2 = Notification for the host supporting EPO 3 = Transition to Normal operation is successful |  |  |
| Checksum                  | CKSUM               |                                                                                                                                       |  |  |
| End Sequence              | <cr> <lf></lf></cr> | End of message termination                                                                                                            |  |  |

Figure 18: Start-up Response Example

The write and read messages are shown in Figure 21. A write message triggers an acknowledgement from the module. A read message triggers a response message containing the requested information.

| Input Write and Read Messages |          |         |             |  |
|-------------------------------|----------|---------|-------------|--|
| Description                   | Write ID | Read ID | Response ID |  |
| Set NMEA Output Messages      | 314      | 414     | 514         |  |
| Set Datum                     | 330      | 430     | 530         |  |
| Static Navigation Threshold   | 386      | 447     | 527         |  |
| Enable Ephemeris Prediction   | 869      | 869     | 869         |  |

Figure 21: Input Write and Read Messages

The module responds to commands with response messages. The acknowledge message is formatted as shown in Figure 22.

| cknowledge Message |                     |                                                                                                                                                                                                                         |  |
|--------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name               | Example             | Description                                                                                                                                                                                                             |  |
| Start Sequence     | \$PMTK              |                                                                                                                                                                                                                         |  |
| Message ID         | 001                 | Acknowledge Identifier                                                                                                                                                                                                  |  |
| Command            | CMD                 | The command that triggered the acknowledge                                                                                                                                                                              |  |
| Flag               | Flg                 | Flag indicating the outcome of the command 0 = Invalid Command 1 = Unsupported Command 2 = Valid command, but action failed 3 = Valid command and action succeeded                                                      |  |
| Checksum           | CKSUM               | CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183 Standard for Interfacing Marine Electronic Devices Checksums are required on all input messages.                                  |  |
| End Sequence       | <cr> <lf></lf></cr> | Each message must be terminated using Carriage Return (CR) Line Feed (LF) (\r\n, 0x0D0A) to cause the receiver to process the input message. They are not printable ASCII characters, so are omitted from the examples. |  |

Figure 22: Acknowledge Message

#### 220 - Position Fix Interval

This command sets the position fix interval. This is the time between when the module calculates its position.

| Position Fix Interval Command and Response |        |          |          |                    |                    |
|--------------------------------------------|--------|----------|----------|--------------------|--------------------|
| Commar                                     | nd     |          |          |                    |                    |
| Start                                      | Msg ID | Interval | Checksum | End                |                    |
| \$PMTK                                     | 220    | ,lval    | *Cksum   | <cr><lf></lf></cr> |                    |
| Respons                                    | e      |          |          |                    |                    |
| Start                                      | Msg ID | CMD      | Flag     | Checksum           | End                |
| \$PMTK                                     | 001    | ,220     | ,Flg     | *Cksum             | <cr><lf></lf></cr> |
|                                            |        |          |          |                    |                    |

Figure 23: Position Fix Interval Command and Response

Ival = the interval time in milliseconds.

The interval must be larger than 100ms. Faster rates require that the baud rate be increased, the number of messages that are output be decreased or both. The module automatically calculates the required data bandwidth and returns an action failed response (Flg = 2) if the interval is faster than the module can output all of the required messages at the current baud rate. The following example sets the interval to 1 second.

\$PMTK220.1000\*1F<CR><LF>

It is recommended to use interval rates of 100ms, 200ms, 500ms, 1,000ms and 2,000ms. Although permissible, non-standard intervals are not guaranteed or recommended.

#### 255 - Sync 1PPS and NMEA Messages

This command enables or disables synchronization between the 1PPS pulse and the NMEA messages. When enabled, the beginning of the NMEA message on the UART is fixed to between 170 and 180ms after the rising edge of the 1PPS pulse. The NMEA message describes the position and time as of the rising edge of the 1PPS pulse.

| Command           Start         Msg ID         Enable         Checksum         End           \$PMTK         255         ,Enable         *Cksum <cr><lf>           Response           Start         Msg ID         CMD         Flag         Checksum         End</lf></cr> | Sync 1P | PS and NI | MEA Mes | sages Comr | nand and Re        | esponse            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|------------|--------------------|--------------------|
| \$PMTK 255 ,Enable *Cksum <cr><lf> Response</lf></cr>                                                                                                                                                                                                                     | Comman  | nd        |         |            |                    |                    |
| Response                                                                                                                                                                                                                                                                  | Start   | Msg ID    | Enable  | Checksum   | End                |                    |
| •                                                                                                                                                                                                                                                                         | \$PMTK  | 255       | ,Enable | *Cksum     | <cr><lf></lf></cr> |                    |
| Start Msg ID CMD Flag Checksum End                                                                                                                                                                                                                                        | Respons | e         |         |            |                    |                    |
|                                                                                                                                                                                                                                                                           | Start   | Msg ID    | CMD     | Flag       | Checksum           | End                |
| \$PMTK                                                                                                                                                                                                                                                                    | \$PMTK  | 001       | ,255    | ,Flg       | *Cksum             | <cr><lf></lf></cr> |

Figure 25: Sync 1PPS and NMEA Messages Command and Response

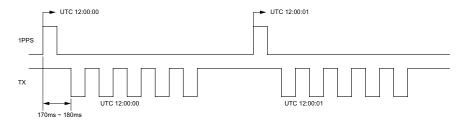



Figure 26: 1PPS and NMEA Message Synchronization

This is only supported at a 1Hz NMEA message rate. It is disabled by default.

The following examples show the use of this command.

Enable Sync: \$PMTK255,1\*2D<CR><LF>Disable Sync: \$PMTK255,0\*2C<CR><LF>

#### 286 - Enable Active Interference Cancellation

This command enables or disables active interference cancellation. This feature helps remove jamming and narrow-band interference to enable a position fix.

| Enable A | ctive Inte | rference | Cancellatior | n Command          | and Respo          |
|----------|------------|----------|--------------|--------------------|--------------------|
| Comman   | nd         |          |              |                    |                    |
| Start    | Msg ID     | Enable   | Checksum     | End                |                    |
| \$PMTK   | 286        | ,Enable  | *Cksum       | <cr><lf></lf></cr> |                    |
| Response |            |          |              |                    |                    |
| Start    | Msg ID     | CMD      | Flag         | Checksum           | End                |
| \$PMTK   | 001        | ,286     | ,Flg         | *Cksum             | <cr><lf></lf></cr> |

Figure 29: Enable Active Interference Cancellation Messages Command and Response

By default, this is enabled after the first fix is acquired.

The following examples show the use of this command.

Enable: \$PMTK286,1\*23<CR><LF> Disable: \$PMTK286,0\*22<CR><LF>

#### Set Datum

This configures the current datum that is used.

| Set Date | ım Commaı  | nd and Res | ponse              |                    |                    |
|----------|------------|------------|--------------------|--------------------|--------------------|
| Write Me | essage     |            |                    |                    |                    |
| Start    | Msg ID     | Datum      | Checksum           | End                |                    |
| \$PMTK   | 330        | ,Datum     | *Cksum             | <cr><lf></lf></cr> |                    |
| Acknow   |            |            |                    |                    |                    |
| Start    | Msg ID     | CMD        | Flag               | Checksum           | End                |
| \$PMTK   | 001        | ,330       | ,Flg               | *Cksum             | <cr><lf></lf></cr> |
| Read Me  | essage     |            |                    |                    |                    |
| Start    | Msg ID     | Checksum   | End                |                    |                    |
| \$PMTK   | 430        | *35        | <cr><lf></lf></cr> |                    |                    |
| Respons  | se Message |            |                    |                    |                    |
| Start    | Msg ID     | Datum      | Checksum           | End                |                    |
| \$PMTK   | 530        | ,Datum     | *Cksum             | <cr><lf></lf></cr> |                    |
|          |            |            |                    |                    |                    |

Figure 31: Set Datum Command and Response

Datum = the datum number to be used.

Reference datums are data sets that describe the shape of the Earth based on a reference point. There are many regional datums based on a convenient local reference point. Different datums use different reference points, so a map used with the receiver output must be based on the same datum. WGS84 is the default world referencing datum.

The module supports 223 different datums. These are listed in Appendix A.

The following example sets the datum to WGS84.

\$PMTK330,0\*2E<CR><LF>

The following example reads the current datum and the module replies with datum 0, which is WGS84.

\$PMTK430\*35<CR><LF> \$PMTK530,0\*28<CR><LF>

#### EASY<sup>™</sup> Ephemeris Prediction

EASY<sup>TM</sup> is a function to generate orbit predictions for faster cold and warm starts. It does this without the need for Internet connectivity or assistance from the host processor. The predictions are good for up to 3 days and are automatically updated when the module obtains a good position fix.

| EASY™ Ephemeris Prediction Command and Response |        |       |         |          |                    |
|-------------------------------------------------|--------|-------|---------|----------|--------------------|
| Write Me                                        | essage |       |         |          |                    |
| Start                                           | Msg ID | Туре  | Enable  | Checksum | End                |
| \$PMTK                                          | 869    | ,Туре | ,Enable | *Cksum   | <cr><lf></lf></cr> |

Figure 33: Ephemeris Prediction Command and Response

Figure 34 shows the Type values.

| Ephemeris Prediction Type Values |                                                             |  |  |
|----------------------------------|-------------------------------------------------------------|--|--|
| Value                            | Description                                                 |  |  |
| 0                                | Query the current state of prediction (enabled or disabled) |  |  |
| 1                                | Set the state of prediction                                 |  |  |
| 2                                | Result of a query                                           |  |  |

Figure 34: Ephemeris Prediction Type Values

The Enable field is 0 to disable or 1 to enable. It is not used in a query.

The response to a set command is a standard acknowledgement packet.

EASY<sup>TM</sup> is enabled by default. **This is only supported with a 1Hz NMEA output rate.** 

The following show examples of this command.

Enable prediction: *\$PMTK869,1,1\*35<CR><LF>*Response: *\$PMTK001,869,3\*37<CR><LF>* 

Disable prediction: *\$PMTK869,1,0\*34<CR><LF>*Response: *\$PMTK001,869,3\*37<CR><LF>* 

Query prediction:\$PMTK869,0\*29<CR><LF>Disabled response:\$PMTK869,2,0\*37<CR><LF>Enabled response:\$PMTK869,2,1\*36<CR><LF>

## Master Development System

The RM Series Master Development System provides all of the tools necessary to evaluate the RM Series GPS receiver module. The system includes a fully assembled development board, an active antenna, development software and full documentation.



Figure 37: The RM Series Master Development System

The development board includes a power supply, a prototyping area for custom circuit development, and an OLED display that shows the GPS data without the need for a computer. A USB interface is also included for use with a PC running custom software or the included development software.



Figure 38: The Master Development System Software

The Master Development System software enables configuration of the receiver and displays the satellite data output by the receiver. The software can select from among all of the supported NMEA protocols for display of the data.

Full documentation for the board and software is included in the development system, making integration of the module straightforward.

## **Board Layout Guidelines**

The module's design makes integration straightforward; however, it is still critical to exercise care in PCB layout. Failure to observe good layout techniques can result in a significant degradation of the module's performance. A primary layout goal is to maintain a characteristic 50-ohm impedance throughout the path from the antenna to the module. Grounding, filtering, decoupling, routing and PCB stack-up are also important considerations for any RF design. The following section provides some basic design guidelines which may be helpful.

During prototyping, the module should be soldered to a properly laid-out circuit board. The use of prototyping or "perf" boards will result in poor performance and is strongly discouraged.

The module should, as much as reasonably possible, be isolated from other components on your PCB, especially high-frequency circuitry such as crystal oscillators, switching power supplies, and high-speed bus lines.

When possible, separate RF and digital circuits into different PCB regions. Make sure internal wiring is routed away from the module and antenna, and is secured to prevent displacement.

Do not route PCB traces directly under the module. There should not be any copper or traces under the module on the same layer as the module, just bare PCB. The underside of the module has traces and vias that could short or couple to traces on the product's circuit board.

The Pad Layout section shows a typical PCB footprint for the module. A ground plane (as large and uninterrupted as possible) should be placed on a lower layer of your PC board opposite the module. This plane is essential for creating a low impedance return for ground and consistent stripline performance.

Use care in routing the RF trace between the module and the antenna or connector. Keep the trace as short as possible. Do not pass under the module or any other component. Do not route the antenna trace on multiple PCB layers as vias will add inductance. Vias are acceptable for tying together ground layers and component grounds and should be used in multiples.

#### **Production Guidelines**

The module is housed in a hybrid SMD package that supports hand and automated assembly techniques. Since the modules contain discrete components internally, the assembly procedures are critical to ensuring the reliable function of the modules. The following procedures should be reviewed with and practiced by all assembly personnel.

## Hand Assembly

Pads located on the bottom of the module are the primary mounting surface (Figure 42). Since these pads are inaccessible during mounting, castellations that run up the side of the module have been provided to facilitate solder wicking to the module's underside. This allows for very

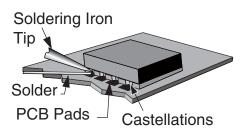



Figure 42: Soldering Technique

quick hand soldering for prototyping and small volume production. If the recommended pad guidelines have been followed, the pads will protrude slightly past the edge of the module. Use a fine soldering tip to heat the board pad and the castellation, then introduce solder to the pad at the module's edge. The solder will wick underneath the module, providing reliable attachment. Tack one module corner first and then work around the device, taking care not to exceed the times in Figure 43.

Warning: Pay attention to the absolute maximum solder times.

Absolute Maximum Solder Times

Hand Solder Temperature: +427°C for 10 seconds for lead-free alloys

Reflow Oven: +240°C max (see Figure 44)

Figure 43: Absolute Maximum Solder Times

## **Automated Assembly**

For high-volume assembly, the modules are generally auto-placed. The modules have been designed to maintain compatibility with reflow processing techniques; however, due to their hybrid nature, certain aspects of the assembly process are far more critical than for other component types. Following are brief discussions of the three primary areas where caution must be observed.

# Appendix A

The following datums are supported by the RM Series.

|        | s GPS Receiver Supported Dat |                                                                         |
|--------|------------------------------|-------------------------------------------------------------------------|
| Number | Datum                        | Region                                                                  |
| 0      | WGS1984                      | International                                                           |
| 1      | Tokyo                        | Japan                                                                   |
| 2      | Tokyo                        | Mean for Japan, South Korea,<br>Okinawa                                 |
| 3      | User Setting                 | User Setting                                                            |
| 4      | Adindan                      | Burkina Faso                                                            |
| 5      | Adindan                      | Cameroon                                                                |
| 6      | Adindan                      | Ethiopia                                                                |
| 7      | Adindan                      | Mali                                                                    |
| 8      | Adindan                      | Mean for Ethiopia, Sudan                                                |
| 9      | Adindan                      | Senegal                                                                 |
| 10     | Adindan                      | Sudan                                                                   |
| 11     | Afgooye                      | Somalia                                                                 |
| 12     | Ain El Abd1970               | Bahrain                                                                 |
| 13     | Ain El Abd1970               | Saudi Arabia                                                            |
| 14     | American Samoa1962           | American Samoa Islands                                                  |
| 15     | Anna 1 Astro1965             | Cocos Island                                                            |
| 16     | Antigua Island Astro1943     | Antigua(Leeward Islands)                                                |
| 17     | Arc1950                      | Botswana                                                                |
| 18     | Arc1950                      | Burundi                                                                 |
| 19     | Arc1950                      | Lesotho                                                                 |
| 20     | Arc1950                      | Malawi                                                                  |
| 21     | Arc1950                      | Mean for Botswana, Lesotho, Malaw<br>Swaziland, Zaire, Zambia, Zimbabwa |
| 22     | Arc1950                      | Swaziland                                                               |
| 23     | Arc1950                      | Zaire                                                                   |
| 24     | Arc1950                      | Zambia                                                                  |
| 25     | Arc1950                      | Zimbabwe                                                                |
| 26     | Arc1960                      | Mean For Kenya Tanzania                                                 |
| 27     | Arc1960                      | Kenya                                                                   |
| 28     | Arc1960                      | Tanzania                                                                |
| 29     | Ascension Island1958         | Ascension Island                                                        |
| 30     | Astro Beacon E 1945          | lwo Jima                                                                |

|        | s GPS Receiver Supported Dat |                                                                                                                                                                           |
|--------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number | Datum                        | Region                                                                                                                                                                    |
| 64     | European 1950                | Italy (Sardinia)                                                                                                                                                          |
| 65     | European 1950                | Italy (Sicily)                                                                                                                                                            |
| 66     | European 1950                | Malta                                                                                                                                                                     |
| 67     | European 1950                | Mean For Austria, Belgium, Denmark<br>Finland, France, W Germany,<br>Gibraltar, Greece, Italy, Luxembourg,<br>Netherlands, Norway, Portugal, Spair<br>Sweden, Switzerland |
| 68     | European 1950                | Mean For Austria, Denmark, France,<br>W Germany, Netherland, Switzerland                                                                                                  |
| 69     | European 1950                | Mean For Iraq, Israel, Jordan,<br>Lebanon, Kuwait, Saudi Arabia, Syria                                                                                                    |
| 70     | European 1950                | Portugal, Spain                                                                                                                                                           |
| 71     | European 1950                | Tunisia,                                                                                                                                                                  |
| 72     | European 1979                | Mean For Austria, Finland<br>,Netherlands ,Norway, Spain,<br>Sweden, Switzerland                                                                                          |
| 73     | Fort Thomas 1955             | Nevis St Kitts (Leeward Islands)                                                                                                                                          |
| 74     | Gan 1970                     | Republic Of Maldives                                                                                                                                                      |
| 75     | Geodetic Dataum 1970         | New Zealand                                                                                                                                                               |
| 76     | Graciosa Base SW1948         | Azores (Faial, Graciosa, Pico, Sao, Jorge, Terceria)                                                                                                                      |
| 77     | Guam1963                     | Guam                                                                                                                                                                      |
| 78     | Gunung Segara                | Indonesia (Kalimantan)                                                                                                                                                    |
| 79     | Gux I Astro                  | Guadalcanal Island                                                                                                                                                        |
| 80     | Herat North                  | Afghanistan                                                                                                                                                               |
| 81     | Hermannskogel Datum          | Croatia-Serbia, Bosnia-Herzegoivna                                                                                                                                        |
| 82     | Hjorsey 1955                 | Iceland                                                                                                                                                                   |
| 83     | Hongkong 1963                | Hong Kong                                                                                                                                                                 |
| 84     | Hu Tzu Shan                  | Taiwan                                                                                                                                                                    |
| 85     | Indian                       | Bangladesh                                                                                                                                                                |
| 86     | Indian                       | India, Nepal                                                                                                                                                              |
| 87     | Indian                       | Pakistan                                                                                                                                                                  |
| 88     | Indian 1954                  | Thailand                                                                                                                                                                  |
| 89     | Indian 1960                  | Vietnam (Con Son Island)                                                                                                                                                  |
| 90     | Indian 1960                  | Vietnam (Near 16 deg N)                                                                                                                                                   |
| 91     | Indian 1975                  | Thailand                                                                                                                                                                  |
| 92     | Indonesian 1974              | Indonesian                                                                                                                                                                |

| RM Serie | s GPS Receiver Supported Datums | S                                                                                                                  |
|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Number   | Datum                           | Region                                                                                                             |
| 126      | North American 1927             | Canada (New Brunswick,<br>Newfoundland, Nova Scotia, Quebec                                                        |
| 127      | North American 1927             | Canada (Northwest Territories, Saskatchewan)                                                                       |
| 128      | North American 1927             | Canada (Yukon)                                                                                                     |
| 129      | North American 1927             | Canal Zone                                                                                                         |
| 130      | North American 1927             | Cuba                                                                                                               |
| 131      | North American 1927             | Greenland (Hayes Peninsula)                                                                                        |
| 132      | North American 1927             | Mean For Antigua, Barbados,<br>Barbuda, Caicos Islands, Cuba,<br>Dominican, Grand Cayman, Jamaica<br>Turks Islands |
| 133      | North American 1927             | Mean for Belize, Costa Rica, El<br>Salvador, Guatemala, Honduras,<br>Nicaragua                                     |
| 134      | North American 1927             | Mean for Canada                                                                                                    |
| 135      | North American 1927             | Mean for Conus                                                                                                     |
| 136      | North American 1927             | Mean for Conus (East of Mississippi,<br>River Including Louisiana, Missouri,<br>Minnesota)                         |
| 137      | North American 1927             | Mean for Conus (West of Mississippi,<br>River Excluding Louisiana, Minnesota<br>Missouri)                          |
| 138      | North American 1927             | Mexico                                                                                                             |
| 139      | North American 1983             | Alaska (Excluding Aleutian Ids)                                                                                    |
| 140      | North American 1983             | Aleutian Ids                                                                                                       |
| 141      | North American 1983             | Canada                                                                                                             |
| 142      | North American 1983             | Conus                                                                                                              |
| 143      | North American 1983             | Hawaii                                                                                                             |
| 144      | North American 1983             | Mexico, Central America                                                                                            |
| 145      | North Sahara 1959               | Algeria                                                                                                            |
| 146      | Observatorio Meteorologico 1939 | Azores (Corvo and Flores Islands)                                                                                  |
| 147      | Old Egyptian 1907               | Egypt                                                                                                              |
| 148      | Old Hawaiian                    | Hawaii                                                                                                             |
| 149      | Old Hawaiian                    | Kauai                                                                                                              |
| 150      | Old Hawaiian                    | Maui                                                                                                               |
| 151      | Old Hawaiian                    | Mean for Hawaii, Kauai, Maui, Oahu                                                                                 |
| 152      | Old Hawaiian                    | Oahu                                                                                                               |
| 153      | Oman                            | Oman                                                                                                               |

| RM Serie | s GPS Receiver Supported Datur | ms                                                                                                                            |
|----------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Number   | Datum                          | Region                                                                                                                        |
| 188      | Santo (Dos) 1965               | Espirito Santo Island                                                                                                         |
| 189      | Sao Braz                       | Azores (Sao Miguel, Santa Maria Ids)                                                                                          |
| 190      | Sapper Hill 1943               | East Falkland Island                                                                                                          |
| 191      | Schwarzeck                     | Namibia                                                                                                                       |
| 192      | Selvagem Grande 1938           | Salvage Islands                                                                                                               |
| 193      | Sierra Leone 1960              | Sierra Leone                                                                                                                  |
| 194      | South American 1969            | Argentina                                                                                                                     |
| 195      | South American 1969            | Bolivia                                                                                                                       |
| 196      | South American 1969            | Brazil                                                                                                                        |
| 197      | South American 1969            | Chile                                                                                                                         |
| 198      | South American 1969            | Colombia                                                                                                                      |
| 199      | South American 1969            | Ecuador                                                                                                                       |
| 200      | South American 1969            | Ecuador (Baltra, Galapagos)                                                                                                   |
| 201      | South American 1969            | Guyana                                                                                                                        |
| 202      | South American 1969            | Mean For Argentina, Bolivia, Brazil,<br>Chile, Colombia, Ecuador, Guyana,<br>Paraguay, Peru, Trinidad and Tobago<br>Venezuela |
| 203      | South American 1969            | Paraguay                                                                                                                      |
| 204      | South American 1969            | Peru                                                                                                                          |
| 205      | South American 1969            | Trinidad and Tobago                                                                                                           |
| 206      | South American 1969            | Venezuela                                                                                                                     |
| 207      | South Asia                     | Singapore                                                                                                                     |
| 208      | Tananarive Observatory 1925    | Madagascar                                                                                                                    |
| 209      | Timbalai 1948                  | Brunei, E Malaysia (Sabah Sarawak)                                                                                            |
| 210      | Tokyo                          | Japan                                                                                                                         |
| 211      | Tokyo                          | Mean for Japan, South Korea,<br>Okinawa                                                                                       |
| 212      | Tokyo                          | Okinawa                                                                                                                       |
| 213      | Tokyo                          | South Korea                                                                                                                   |
| 214      | Tristan Astro 1968             | Tristam Da Cunha                                                                                                              |
| 215      | Viti Levu 1916                 | Fiji (Viti Levu Island)                                                                                                       |
| 216      | Voirol 1960                    | Algeria                                                                                                                       |
| 217      | Wake Island Astro 1952         | Wake Atoll                                                                                                                    |
| 218      | Wake-Eniwetok 1960             | Marshall Islands                                                                                                              |
| 219      | WGS 1972                       | Global Definition                                                                                                             |

#### Resources

#### Support

For technical support, product documentation, application notes, regulatory guidelines and software updates, visit www.linxtechnologies.com

#### **RF Design Services**

For customers who need help implementing Linx modules, Linx offers design services including board layout assistance, programming, certification advice and packaging design. For more complex RF solutions, Apex Wireless, a division of Linx Technologies, creates optimized designs with RF components and firmware selected for the customer's application. Call +1 800 736 6677 (+1 541 471 6256 if outside the United States) for more information

#### Antenna Factor Antennas

Linx's Antenna Factor division has the industry's broadest selection of antennas for a wide variety of applications. For customers with specialized needs, custom antennas and design services are available along with simulations of antenna performance to speed development. Learn



performance to speed development. Learn more at www.linxtechnologies. com.



Linx Technologies 159 Ort Lane Merlin, OR, US 97532

Phone: +1 541 471 6256 Fax: +1 541 471 6251

www.linxtechnologies.com

#### Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Data Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is the customer's responsibility to verify the suitability of the part for the intended application. NO LINX PRODUCT IS INTENDED FOR USE IN ANY APPLICATION WHERE THE SAFETY OF LIFE OR PROPERTY IS AT RISK.

Linx Technologies DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY OF CUSTOMER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY FROM ANY DEFECTIVE OR NON-CONFORMING PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX TECHNOLOGIES. The limitations on Linx Technologies' liability are applicable to any and all claims or theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability for injury to person or property, economic loss, or business interruption) for all claims, including claims from third parties, arising from the use of the Products. The Customer will indemnify, defend, protect, and hold harmless Linx Technologies and its officers, employees, subsidiaries, affiliates, distributors, and representatives from and against all claims, damages, actions, suits, proceedings, demands, assessments, adjustments, costs, and expenses incurred by Linx Technologies as a result of or arising from any Products sold by Linx Technologies to Customer. Under no conditions will Linx Technologies be responsible for losses arising from the use or failure of the device in any application, other than the repair, replacement, or refund limited to the original product purchase price. Devices described in this publication may contain proprietary, patented, or copyrighted techniques, components, or materials. Under no circumstances shall any user be conveyed any license or right to the use or ownership of such items.

©2016 Linx Technologies. All rights reserved.

The stylized Linx logo, Wireless Made Simple, WiSE, CipherLinx and the stylized CL logo are trademarks of Linx Technologies.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for GPS Modules category:

Click to view products by Linx Technologies manufacturer:

Other Similar products are found below:

ISM3333-C6.1 S2-105V4-Z185K GPS-11858 SL871GPS232R001 DD-14239 GPS-10922 M20050-1 M20048-1 NEO-M8M-0 S2-105Y0-Z1E0G NEO-M8P-0 SIM28ML EWM-G110H01E WISE-4610P-NA M10578-A3 GPS-13740 A2200-A A5100-A MIKROE-4150 28504 L26ADR-S89 L26T-S89 L70B-M39 L76L-M33 L86-M33 L89-S90 L96-M33 S2-10640-Z1G0D EL.1A 4037735105317 4037735105331 W2SG0084i-B-T 2614021137000 EWM-G108H01E RXM-GNSS-GM-T TEL0132 PKG300060P PKG300071 PKG900000000271T RXM-GPS-F4-T RXM-GPS-FM-B A1084-A A2100-A GPS-13670 GYSFFMAXC