

TRM-xxx-DP1203 Data Guide (Preliminary)

Wireless made simple[®]

Electrical Specifications

Absolute Maximum Ratings

Absolute Maximum Ratings							
Description	Min.	Max.	Unit				
Vdd – Power Supply	2.4	3.6	VDC				
Operating Temperature	-40	+85	°C				
Storage Temperature	-55	+125	°C				
Soldering Temperature (max 15 seconds)		+260	°C				

.

Figure 2: Absolute Maximum Ratings

Warning: ESD sensitive device. Precautions should be taken when handling the device in order to prevent permanent damage.

Detailed Electrical Specifications

Figure 3 gives the specifications of the TRM-xxx-DP1203 modules under the following conditions:

Supply voltage VDD = 3.3V, temperature = 25°C, frequency deviation Δf = 5kHz, Bit-rate = 4.8kbps, base-band filter bandwidth BWSSB = 10kHz, carrier frequency fc = 434MHz for the TRM-433-DP1203, fc = 869MHz for the TRM-868-DP1203 and fc = 915MHz for the TRM-915-DP1203, bit error rate BER = 0.1% (measured at the output of the bit synchronizer), antenna output matched at 50 Ω .

Detailed Electrical Specifications						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
FR	Synthesized Frequency Range	TRM-433-DP1203	433		435	MHz
		TRM-868-DP1203	868		870	MHz
		TRM-915-DP1203	902		928	MHz
IDDSL	Sleep Mode Supply Current			0.2	1	μA
IDDST	Standby Mode Supply Current	39MHz running		0.85	1.1	mA
IDDR	Rx Mode Supply Current			14	17	mA
IDDT	Tx Mode Supply Current	P _{RF} = 5dBm		33	40	mA
		P _{RF} = 11dBm		62	75	mA
RFS	RF Sensitivity	A-mode		-111	-108	dBm
FDA	Frequency Deviation	Programmable	1		255	kHz
BR	Bit Rate	Programmable	1.2		152.3	kbps
P _{rf}	RF Output Power	RFOP1 (programmable)	-3	0		dBm
		RFOP2 (programmable)	+2	+5		dBm
		RFOP3 (programmable)	+7	+10		dBm
		RFOP3 (programmable)	+12	+15		dBm
TS_TR	Transmit Wake-up Time	From Oscillator Enabled		150	250	μs
TS_RE	Receive Wake-up Time	From Oscillator Enabled		0.5	08	ms
TS_OS	Quartz Oscillator Wake-up Time	Fundamental		1	2	ms
XTAL	Quartz Oscillator Frequency			39		MHz
VIH	Digital Input Level High	% VDD	75			%
VIL	Digital Input Level Low	% VDD			25	%

Figure 3: Detailed Electrical Specifications

Pin Descriptions

Pin D	escriptions		
Pin	Name	I/O	Description
1	GND		Ground
2	RF_IN/OUT	IN/OUT	RF input/output terminal
3	GND		Ground
4	VDDP		Supply voltage/advised NC
5	VDDA		Supply voltage
6	GND		Ground
7	VDD		Supply voltage
8	EN	IN	3-wire interface communication enable signal
9	SWITCH	IN/OUT	Operating mode selection
10	GND	IN	Ground
11	GND	IN	Ground
12	SO	OUT	Data output of the 3-wires interface
13	SI	IN	Data input of the 3-wires interface
14	SCK	IN	Input clock of the 3-wires interface
15	CLKOUT	OUT	Output clock at quartz frequency divided by 4, 8, 16 or 32
16	DCLK	OUT	Transmitter or receiver clock
17	DATA	IN/OUT	Transmitter input or receiver output data
18	DATAIN	IN	Transmitter input data
19	PATTERN	OUT	Output of the pattern recognition block
20	RX	IN	Antenna switch RX select
21	ΤX	IN	Antenna switch TX select

Figure 5: Pin Descriptions

ConfigSwitch, SWITCH pin and SWParam Configuration Register				
ConfigSwitch Register	Switch pin	RTParam_switch_ext configuration parameter	SWParam configuration set selected	
0	Switch is an output: '1' in transmitter mode '0' in the other mode	0	Set #1 SWParam_mode_1 SWParam_Power_1 SWParam_Rmode_1 SWParam_t_delsig_in_1 SWParam_freq_1	
1	Switch is an output: '1' in transmitter mode '0' in the other mode	0	Set #2 SWParam_mode_2 SWParam_Power_2 SWParam_Rmode_2 SWParam_t_delsig_in_2 SWParam_freq_2	
x	0	0	Set #1 SWParam_mode_1 SWParam_Power_1 SWParam_Rmode_1 SWParam_t_delsig_in_1 SWParam_freq_1	
x	1	0	Set #2 SWParam_mode_2 SWParam_Power_2 SWParam_Rmode_2 SWParam_t_delsig_in_2 SWParam_freq_2	

Figure 7: ConfigSwitch, SWITCH pin and SWParam Configuration Register

Standard Sequence for Switching between Receiver and Transmitter

The TRM-xxx-DP1203 is able to switch between any configuration by using the 3-wire bus or by using the pin SWITCH. This section (Figures 8 and 9) describes the switching sequence from Set #1 to Set #2.

Switching sequence by using the 3-wire bus

Switch_ext = 0 (Bit 3, Address 00010)

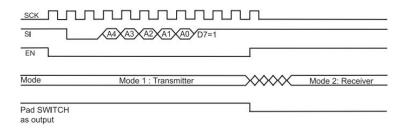


Figure 8: Switching Sequence Using 3-wire Bus

Typical Applications

The schematic in Figure 11 shows the TRM-xxx-DP1203 interfaced with a SEMTECH's microcontroller XE8806A.

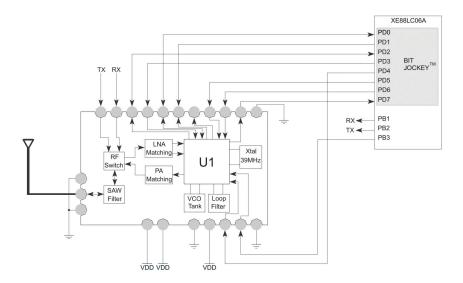


Figure 11: TRM-xxx-DP1203 and XE8806A Interfaced Schematic

Linx Technologies 159 Ort Lane Merlin, OR, US 97532

3090 Sterling Circle, Suite 200 Boulder, CO 80301

Phone: +1 541 471 6256 Fax: +1 541 471 6251 www.linxtechnologies.com

Disclaimer

Linx Technologies is continually striving to improve the quality and function of its products. For this reason, we reserve the right to make changes to our products without notice. The information contained in this Data Guide is believed to be accurate as of the time of publication. Specifications are based on representative lot samples. Values may vary from lot-to-lot and are not guaranteed. "Typical" parameters can and do vary over lots and application. Linx Technologies makes no guarantee, warranty, or representation regarding the suitability of any product for use in any specific application. It is Customer's responsibility to verify the suitability of the part for the intended application. At Customer's request, Linx Technologies may provide advice and assistance in designing systems and remote control devices that employ Linx Technologies RF products, but responsibility for the ultimate design and use of any such systems and devices remains entirely with Customer and/or user of the RF products.

LINX TECHNOLOGIES DISCLAIMS ANY AND ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL LINX TECHNOLOGIES BE LIABLE FOR ANY CUSTOMER'S OR USER'S INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THE DESIGN OR USE OF A REMOTE CONTROL SYSTEM OR DEVICE EMPLOYING LINX TECHNOLOGIES RF PRODUCTS OR FOR ANY OTHER BREACH OF CONTRACT BY LINX TECHNOLOGIES. CUSTOMER AND/OR USER ASSUME ALL RISKS OF DEATH, BODILY INJURIES, OR PROPERTY DAMAGE ARISING OUT OF OR RELATED TO THE USE OF LINX TECHNOLOGIES RF PRODUCTS, INCLUDING WITH RESPECT TO ANY SERVICES PROVIDED BY LINX RELATED TO THE USE OF LINX TECHNOLOGIES RF PRODUCTS. LINX TECHNOLOGIES SHALL NOT BE LIABLE UNDER ANY CIRCUMSTANCES FOR A CUSTOMER'S, USER'S, OR OTHER PERSON'S DEATH, BODILY INJURY, OR PROPERTY DAMAGE ARISING OUT OF OR RELATED TO THE DESIGN OR USE OF A REMOTE CONTROL SYSTEM OR DEVICE EMPLOYING LINX TECHNOLOGIES RF PRODUCTS.

The limitations on Linx Technologies' liability are applicable to any and all claims or theories of recovery asserted by Customer, including, without limitation, breach of contract, breach of warranty, strict liability, or negligence. Customer assumes all liability (including, without limitation, liability for injury to person or property, economic loss, or business interruption) for all claims, including claims from third parties, arising from the use of the Products. Under no conditions will Linx Technologies be responsible for losses arising from the use or failure of the device in any application, other than the repair, replacement, or refund limited to the original product purchase price. Devices described in this publication may contain proprietary, patented, or copyrighted techniques, components, or materials.

All rights reserved. ©2012 Linx Technologies

The stylized Linx logo, Wireless Made Simple, CipherLinx, WiSE and the stylized CL logo are trademarks of Linx Technologies.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sub-GHz Modules category:

Click to view products by Linx Technologies manufacturer:

Other Similar products are found below :

HMC-C024nRF24L01P-MODULE-SMACMD-KEY2-418-CREV640-A90SM1231E868HMC-C582SM-MN-00-HF-RCHMC-C031LoRa Node Kit(US)Sierra HL7588 4G KIT(US)WISE-4610-S672NAEC21AUFA-MINIPCIEEC21EUGA-MINIPCIECS-EASYSWITCH-25EC21JFB-MINIPCIEE28-2G4M27SDL-RFM95-868MDL-RFM95-915MDL-RFM96-433MRa-07H-V1.1Ra-07Ra-01SHRa-01S-TRa-01SH-TCMD-HHCP-418-MDCMD-HHCP-433-MDCMD-HHLR-418-MD209500000200XB9X-DMRS-03120911051101COM-13909HMC-C033COM-13910WRL-14498SX1276RF1KASHMC-C004HMC-C014HMC-C010HMC-C050HMC-C001HMC-C006HMC-C029HMC-C019HMC-C021HMC-C042HMC-C048HMC-C051