LITECON
 General Purpose Type Photocoupler

LTV-4N25 Series/LTV-4N26 Series
LTV-4N27 Series/LTV-4N28 Series
4N25 Series/4N26 Series/4N27 Series/4N28 Series

Features

- Response Time
(tr: TYP, $3 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{ce}}=10 \mathrm{~V}, \mathrm{Ic}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$)
- UL approved (No. E113898)
- TUV approved (No.R9653630)
- CSA approved (No. CA91533-1)
- FIMKO approved (No. 193422)
- NEMKO approved (No. P96103013)
- DEMKO approved (No. 303985)
- SEMKO approved (No. 9646047/01-30)
- VDE approved (No. 094722)
- Options available :
-Leads with 0.4 "(10.16mm)spacing (M Type)
-Leads bends for surface mounting(S Type)
-Tape and Reel of Type I for SMD(Add"-TA"Suffix)
-Tape and Reel of Type II for SMD(Add"-TA1"Suffix)
-VDE 0884 approvals (Add"-V"Suffix)

Applications

1. I/O interfaces for computers.
2. System appliances, measuring instruments.
3. Signal transmission between circuits of different potentials and impedances.

Package Dimensions

Note:

1. Year date code.
2. 2-digit work week.
3. Factory code shall be marked (Z : Taiwan, Y: Thailand).
4. Model No. : LTV4N25 ; LTV4N26 ; LTV4N27 ; LTV4N28 ; 4N25 ; 4N26 ; 4N27 ; 4N28.
5. All dimensions are in millimeters (inches).
6. Tolerance is $\pm 0.25 \mathrm{~mm}$ (. 010 ") unless otherwise noted.
7. Specifications are subject to change without notice.

Ordering Information

Part Number	Package	Safety Standard Approval	Application part number
LTV-4N25 / 4N25 LTV-4N25M / 4N25M LTV-4N25S / 4N25S LTV-4N25S-TA / 4N25S-TA LTV-4N25S-TA1 / 4N25S-TA1	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)	- UL approved - TUV approved - CSA approved - FIMKO approved - NEMKO approved	LTV - 4N25
LTV-4N26 / 4N26 LTV-4N26M / 4N26M LTV-4N26S / 4N26S LTV-4N26S-TA / 4N26S-TA LTV-4N26S-TA1 / 4N26S-TA1	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)	- SEMKO approved - DEMKO approved	LTV - 4N26
LTV-4N27 / 4N27 LTV-4N27M / 4N27M LTV-4N27S / 4N27S LTV-4N27S-TA / 4N27S-TA LTV-4N27S-TA1 / 4N27S-TA1	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6-pin (tape and reel packaging of type II)		LTV - 4N27
LTV-4N28 / 4N28 LTV-4N28M / 4N28M LTV-4N28S / 4N28S LTV-4N28S-TA / 4N28S-TA LTV-4N28S-TA1 / 4N28S-TA1	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)		LTV - 4N28
LTV4N25-V / 4N25-V LTV4N25M-V / 4N25M-V LTV4N25S-V / 4N25S-V LTV4N25STA-V / 4N25STA-V LTV4N25STA1-V / 4N25STA1-V	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)	- VDE approved	LTV - 4N25
LTV4N26-V / 4N26-V LTV4N26M-V / 4N26M-V LTV4N26S-V / 4N26S-V LTV4N26STA-V / 4N26STA-V LTV4N26STA1-V / 4N26STA1-V	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6-pin (tape and reel packaging of type II)		LTV - 4N26
LTV4N27-V / 4N27-V LTV4N27M-V / 4N27M-V LTV4N27S-V / 4N27S-V LTV4N27STA-V / 4N27STA-V LTV4N27STA1-V / 4N27STA1-V	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)		LTV - 4N27
LTV4N28-V / 4N28-V LTV4N28M-V / 4N28M-V LTV4N28S-V / 4N28S-V LTV4N28STA-V / 4N28STA-V LTV4N28STA1-V / 4N28STA1-V	6-pin DIP 6 -pin (leads with 0.4 " spacing) 6 -pin (lead bends for surface mount) 6 -pin (tape and reel packaging of type I) 6 -pin (tape and reel packaging of type II)		LTV - 4N28

Parameter			Symbol	Rating	Unit
Input	Forward Current		IF	80	mA
	Reverse Voltage		VR	6	V
	Power Dissipation		P	150	mW
Output	Collector-Emitter Voltage		Vceo	30	V
	Collector-Base Voltage		Vсво	70	V
	Emitter-Collector Voltage		Veco	7	V
	Collector Current		Ic	100	mA
	Collector Power Dissipation		Pc	150	mW
Total Power Dissipation			Ptot	250	mW
*1.Isolation Voltage		4N25	Viso	2,500	$V_{\text {rms }}$
		4N26		1,500	
		4N27		1,500	
		4N28		500	
Operating Temperature			Topr	-55~+100	${ }^{\circ} \mathrm{C}$
Storage Temperature			$\mathrm{T}_{\text {stg }}$	-55~+150	${ }^{\circ} \mathrm{C}$
*2.Soldering Temperature			Tsol	260	${ }^{\circ} \mathrm{C}$

*1. AC for 1 minute, R.H. $=40 \sim 60 \%$

- Isolation voltage shall be measured using the following method.
(1)Short between anode and cathode on the primary side and between collector, emitter and base on the secondary side.
(2)The isolation voltage tester with zero-cross circuit shall be used.
(3)The waveform of applied volttage shall be a sine wave.
*2. For 10 seconds.

Electrical/Optical Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter			Symbol	Min.	Typ.	Max.	Unit	Conditions
$\begin{aligned} & \text { 흘 } \\ & \text { In } \end{aligned}$	Forward Voltage		V_{F}	-	1.2	1.5	V	$\mathrm{IF}=10 \mathrm{~mA}$
	Reverse Current		IR	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$
	Terminal Capacitance		C_{t}	-	50	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{kHz}$
$\begin{aligned} & \text { 訁 } \\ & \text { D } \\ & \text { O } \end{aligned}$	Collector Dark Current	4N25/26/27	Iceo	-	-	50	nA	V ce $=10 \mathrm{~V}$
		4N28		-	-	100		
	Collector-Emitter Breakdown Voltage		BVceo	30	-	-	V	$\mathrm{Ic}=0.1 \mathrm{~mA}$
	Emitter-Collector Breakdown Voltage		BVeco	7	-	-	V	$\mathrm{lE}=10 \mu \mathrm{~A}$
	Collector-Base Breakdown Voltage		BVсво	70	-	-	V	$\mathrm{Ic}=0.1 \mathrm{~mA}$
	Collector Current	4N25/26	Ic	2	-	-	mA	$\mathrm{IF}=10 \mathrm{~mA}$
		4N27/28		1	-	-		$\mathrm{VCE}=10 \mathrm{~V}$
	*1 Current Transfer Ratio	4N25/26	CTR	20	-	-	\%	$\mathrm{IF}=10 \mathrm{~mA}$
		4N27/28		10	-	-		V CE $=10 \mathrm{~V}$
	Collector-emitter Saturation Voltage		Vce(sat)	-	0.1	0.5	V	$\mathrm{IF}=50 \mathrm{~mA}, \mathrm{Ic}=2 \mathrm{~mA}$
	Isolation Resistance		Riso	5×10^{10}	1×10^{11}	-	Ω	DC500V, 40~60\% R.H.
	Floating Capacitance		Cf_{f}	-	1.0	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Response Time (Rise)		tr	-	3		$\mu \mathrm{s}$	Vce $=10 \mathrm{~V}$, Rbe $=\infty$
	Response Time (Fall)		tf	-	3	-	$\mu \mathrm{s}$	

*1. $C T R=\frac{I C}{I F} \times 100 \%$

Typical Electrical/Optical Characteristic Curves ($25^{\circ} \mathrm{C}$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Forward Current vs. Forward Voltage

Fig. 5 Collector Current vs. Collector-emitter Voltage

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Fig. 4 Current Transfer Ratio vs. Forward Current

Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 7 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig. 9 Response Time vs. Load Resistance

Fig. 11 Collector-emitter Saturation Voltage vs. Forward Current

Fig. 8 Collector Dark Current vs. Ambient Temperature

Fig. 10 Frequency Response

Test Circuit for Response Time

Test Circuit for Frequency Response

Datasheets for electronic components.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S SFH615AGR-X007T PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2581L2-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD2SMTR ILD615-1X007 ILQ2-X007 VO217AT VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED

