0.56" 7-Segment Numeric LED Displays With MOS I.C. Driver LTM-8500 Series

Features

- 0.56 inch $(14.22 \mathrm{~mm})$ digit height.
- Wide supply voltage operation.
- Serial data input.
- Constant Current drivers.
- Continuous brightness control.
- Solid state reliability-long operation life.
- Wide viewing angle.
- Choices of five bright colors/bright red/green/yellow/ red orange/high efficiency red.
- TTL compatible.

Description

The LTM-8500 series are 0.56 inch (14.22 mm) numeric display modules, and a built-in M5450 MOS integrated circuits. The integrated circuit contains serial data input, 35 bits shift register. 34 LED driver output and a brightness control.
The bright red yellow and green devices utilize LED chips which are made from GaP on a transparent GaP substrate. The red orange and high efficiency red devices utilize LED chips which are made from GaAsP on a transparent GaP substrate. The MOS integrated circuits are produced with N -channel silicon gate technology.
Bright red displays have black face and red segments. Green and yellow displays have gray face and white segments. Red orange displays have orange face and orange segments. High efficiency red displays have red face and red segments.

C. LTM-8530

Package Dimensions
A. LTM-8522

B. LTM-8529

Notes: All dimensions are in millimeters (inches). Tolerance : $\pm 0.25 \mathrm{~mm}$ (0.010 ") unless otherwise noted.

Devices

Part No. LTM-				Description	Pockage Dimension	
Bright Red	Green	Yellow	Red Orange			A
8522 P	8522 G	8522 Y	8522 E		3 Digit, Rt. Hand Decimal	B
8529 P	8529 G	8529 Y	8529 E	8529 HR	$11 / 2$ Digit, Rt. Hand Decimal	C
8530 P	8530 G	8530 Y	8530 E	8530 HR	2 Digit, Rt. Hand Decimal	

Pin Connection

Pin No.	Connection		
	LTM-8522	LTM-8529	LTM-8530
1	Vss	Vss	Vss
2	VLed	VLed	VLed
3	VLed	No Pin	No Pin
4	Bit 25 Output	No Pin	No Pin
5	Bit 26 Output	No Pin	No Pin
6	Bit 27 Output	Bit 15 Output	Bit 17 Output
7	Bit 28 Output	Bit 16 Output	Bit 18 Output
8	Bit 29 Output	Bit 17 Output	Bit 19 Output
9	Bit 30 Output	Bit 18 Output	Bit 20 Output
10	Bit 31 Output	Bit 19 Output	Bit 21 Output
11	Bit 32 Output	Bit 20 Output	Bit 22 Output
12	Bit 33 Output	Bit 21 Output	Bit 23 Output
13	Bit 34 Output	Bit 22 Output	Bit 24 Output
14	Data Enable	Data Enable	Data Enable
15	Data Input	Data Input	Data Input
16	Clock Input	Clock Input	Clock Input
17	Vod	VRD	VDD
18	BRT. Control	BRT. Control	BRT. Control

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage*1	VDD	-0.3	12	V
Input Voltage	VI	-0.3	12	V
Off State Output Voltage	Vo(off)		12	V
LED Supply Voltage	VLED	2.8	3.5	V
Power Dissipation of IC*2	PD(IC)		335	mW
Supply Current	IDD		8.5	mA
Operating Temperature Range	Top	-20	+60	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-20	${ }^{\circ} \mathrm{C}$	
Solder Temperature $1 / 16$ Inch Below Seating Plane for 3 Seconds at $260^{\circ} \mathrm{C}$				

Note : 1. All voltages are with respect to Vss(GND)
2. Power dissipation of IC is given by $P_{D}=\left(V_{L E D}-V_{F}\right) \cdot\left(I_{F}\right) \cdot($ No. of Segments $)+(8.5 m A) \cdot\left(V_{D D}\right)$
${ }^{*} \mathrm{~V}_{\mathrm{F}}$ is LED forward voltage.

Recommended Operating Condition at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Supply Voltage	Vdd	4.75		11	V	
Input Voltage Logical" 0" Level Logical" 1" Level Logical" 1" Level	VI	$\begin{gathered} -0.3 \\ 2.2 \\ \text { VDD }-2 \\ \hline \end{gathered}$		0.8 Vdd Vdd	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\pm 10 \mu \mathrm{~A}$ Input Bias $4.75 \mathrm{~V}<\mathrm{VDD}<5.25 \mathrm{~V}$ Vod $>5.25 \mathrm{~V}$
Brightness Input Current	IB	0		0.75	mA	
Brightness Input Voltage	Vв	3		4.3	V	Input Current $=750 \mu \mathrm{~A}$
Off State Voltage	Vo(off)			11	V	
Output Sink Current Segment Off Segment On Input Clock Frequency	Fclock	0	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	10 0.5	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{MHZ} \end{gathered}$	$\begin{gathered} I_{F}=0 \mu \mathrm{~A} \\ I_{B}=100 \mu \mathrm{~A} \\ I_{F}=200 \mu \mathrm{~A} \end{gathered}$
Output Matching	Io			± 20	\%	

Electrical/Optical Characteristics at $\mathbf{T a}=25^{\circ} \mathrm{C}$

LTM-8522P/8529P/8530P

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Average Luminous Intensity	IV	320	950		$\mu \mathrm{~cd}$	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Peak Emission Wavelength	$\lambda \mathrm{P}$		697		nm	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Spectral Line Half-Width	$\Delta \lambda$		90		nm	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$		657		nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Luminous Intensity Matching Ratio	$\mathrm{Iv}-\mathrm{m}$			$2: 1$		$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$

LTM-8522G/8529G/8530G

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Average Luminous Intensity	IV	800	2400		$\mu \mathrm{~cd}$	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Peak Emission Wavelength	$\lambda \mathrm{P}$		565		nm	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Spectral Line Half-Width	$\Delta \lambda$		30		nm	$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$		569		nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Luminous Intensity Matching Ratio	$\mathrm{Iv}-\mathrm{m}$			$2: 1$		$\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA}$

LTM-8522Y/8529Y/8530Y

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Average Luminous Intensity	IV	800	2400		$\mu \mathrm{~cd}$	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Peak Emission Wavelength	$\lambda \mathrm{P}$		585		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Spectral Line Half-Width	$\Delta \lambda$		35		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$		588		nm	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
Luminous Intensity Matching Ratio	$\mathrm{IV}-\mathrm{m}$			$2: 1$		$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$

LTM-8522E/8529E/8530E

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Average Luminous Intensity	IV	800	2400		$\mu \mathrm{~cd}$	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Peak Emission Wavelength	$\lambda \mathrm{P}$		630		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Spectral Line Half-Width	$\Delta \lambda$		40		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$		621		nm	$\mathrm{IF}_{\mathrm{F}}=20 \mathrm{~mA}$
Luminous Intensity Matching Ratio	$\mathrm{Iv}-\mathrm{m}$			$2: 1$		$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$

LTM-8522HR/8529HR/8530HR

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Average Luminous Intensity	IV	800	2400		$\mu \mathrm{~cd}$	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Peak Emission Wavelength	$\lambda \mathrm{P}$		635		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Spectral Line Half-Width	$\Delta \lambda$		40		nm	$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$
Dominant Wavelength	$\lambda \mathrm{d}$		623		nm	$\mathrm{IF}_{\mathrm{F}=20 \mathrm{~mA}}$
Luminous Intensity Matching Ratio	Iv-m			$2: 1$		$\mathrm{IB}_{\mathrm{B}}=0.4 \mathrm{~mA}$

Note: Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (Commision Internationale De L'Eclairage) eye-response curve.

Functional Description

Serial data transfer from the data source to the display driver is accomplished with 2 signals serial data and clock. Using a format of a leading "1" followed by the 35 data bits allow data transfer without an additional load signal. The 35 data bits are latched after the 36th bit is completed, thus providing non multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time.
Brightness of display is determined by control the output current of LED display. A 1 nF capacitor should be connected to brightness control, Pin 7 to prevent possible oscillations. The output current is typically 25 times greater than the current into Pin 7 which is set by an external variable resistor. There is an internal limiting resistor of 400Ω nominal value.
Figure 1 shows the input data format. A start bit of logical "1" preceed the 35 bits of data. At the 36th clock, a LOAD signal is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches. At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master-slave configuration. There is no clear for master portion of the first register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers won't clear. When power is first applied to the chip, an internal power ON, a reset signal is generated which reset all registers and all latches. The START bit and first clock return the chip on its normal operation. Bit 1 is the first following the start bit and it will appear on the segment A of the digit 1. A logical "1" at the input will turn on the appropriate LED. Figure 2 shows the timing relationship between data, clock, and DATA ENABLE. A max. clock frequency of 0.5 MHz is assumed.

Figure 1. Internal Block Diagram
Figure 2. Input Data Format

LOAD
(INTERNAL)

RESET
(INTERNAL)
\qquad
\qquad \square

Figure 3. Timing Relationship

Table I Serial Data Input Sequence

Bit	LTM-8522		LTM-8529		LTM-8530	
	Digit	Segment	Digit	Segment	Digit	Segment
1	1	A	1	B	1	A
2	1	B	1	C	1	B
3	1	C	1	G	1	C
4	1	D	1	H	1	D
5	1	E	1	J	1	E
6	1	F	1	D.P.	1	F
7	1	G	2	A	1	G
8	1	D.P.	2	B	1	D.P.
9	2	A	2	C	2	A
10	2	B	2	D	2	B
11	2	C	2	E	2	C
12	2	D	2	F	2	D
13	2	E	2	G	2	E
14	2	F	2	D.P.	2	F
15	2	G		Pin 6	2	G
16	2	D.P.		Pin 7	2	D.P.
17	3	A		Pin 8		Pin 6
18	3	B		Pin 9		Pin 7
19	3	C		Pin 10		Pin 8
20	3	D		Pin 11		Pin 9
21	3	E		Pin 12		Pin 10
22	3	F		Pin 13		Pin 11
23	3	G		No Connection		Pin 12
24	3	D.P.		No Connection		Pin 13
25		Pin 4		No Connection		No Connection
26		Pin 5		No Connection		No Connection
27		Pin 6		No Connection		No Connection
28		Pin 7		No Connection		No Connection
29		Pin 8		No Connection		No Connection
30		Pin 9		No Connection		No Connection
31		Pin 10		No Connection		No Connection
32		Pin 11		No Connection		No Connection
33		Pin 12		No Connection		No Connection
34		Pin 13		No Connection		No Connection

Typical Application

A. 1 1/2 DIGIT DISPLAY

B. 2 DIGIT DISPLAY

C. 2 1/2 DIGIT DISPLAY

E. 3 1/2 DIGIT DISPLAY

NOTES:1.Clean only in water,isopropanol, ethanol,freon TF(or equivalent).
2.Luminous intensity is measured with a light sensor and filter combination thar approximates the CIE (Commision Internationale De L'Eclairage)eye-response curve.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Displays \& Accessories category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
LTC-2721WC LTC-4624JD LTC-4627WC LTC-571P LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 $\underline{1668}$ HT-F196NB-5323 IPD2131-27 SA03-12EWA LDQ-N514RI LDS-A3506RD LDS-A3926RI SC03-12HDB SI-B9T151550WW SI-B9V171550WW SLC-3PF-
WL SLDN-32M-G 1624 LTC-2621JD LTC-2623WC LTC-4627JD LTD-322G LTD-482PC LTP-1057AHR LTP-1457AKR LTP-3784G-
01 LTS-313AP LTS-4812SKR-P LTS-547AE LTS-6780P 446010401-3 HV-7W30-6829 DA43-11GWA LDD-A516RI-17 LDD-E305RI
LDQ-N3402RI LDQ-N3606RI LDT-M2804RI 86004CB830 LTP-3862JD LTP-2088AKD LTD-6740P LTS-6880Y LDS-
SMC3002RISUGTR LTC-2623E CC25-12YWA LDM-6432-P3-UR-1

