

Photocouplers LTV-0701 Data Sheet

Created Date : 01/ 02/ 2012
Revision: 1.0, 01/ 02/ 2012

Lite-on Technology Corp.
Optoelectronics SBG
http://www.liteon.com/opto

Data Sheet

\square

1. DESCRIPTION

These high gain series couplers use a light emitter diode and an integrated high gain photo detector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltage and high speed operation. Where desired the Vcc and Vo terminals may be tied together to achieve conventional photo darlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

1.1 Features

- SO8 package
- High current transfer ratio - 2000\% typical.
- Low input current requirements -0.5 mA

■ High output current -60 mA

- CTR guarantee $-0 \sim 70^{\circ} \mathrm{C}$.
- Instantaneous common mode rejection 10KV/ μ sec

■ TTL compatible output $-0.1 \mathrm{~V} \mathrm{~V}_{\text {OL }}$ typical

1.2 Applications

- Digital logic ground isolation
- Low input current line receiver
- Telephone ring detector
- EIA-RS-232C line receiver
- Current loop receiver
- High common mode noise line receiver

1.3 Functional Diagram

Truth Table (Positive Logic)

LED	OUT
ON	L
OFF	H

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin8 and Pin5

LITECON1
OPTOELECTRONICS

Data Sheet

Photocouplers LTV-0701

2. PACKAGE DIMENSIONS

LAND PAIIERN RECOMMENDATION

Part No : LTV-0701

Notes:

1. Date code
2. "V" to represent VDE0884
3. Date code
4. Dimensions are all in Millimeters.

LITEONI ${ }^{\circ}$

Data Sheet

3. TAPING DIMENSIONS

Quantities Per Reel

Package Type	LTV-0701
Quantities (pcs)	2000

Photocouplers LTV-0701

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ *1

	Parameter	Symbol	Rating	Unit
Input	Average Forward Input Current	$I_{\text {F }}$	20	mA
	Reverse Input Voltage	$V_{\text {R }}$	5	V
	Power Dissipation	PI	35	mW
Output	Output Collector Current	10	60	mA
	Output Collector Voltage	Vo	-0.5~18	V
	Output Collector Power Dissipation	P。	100	mW
	Isolation Voltage	$\mathrm{V}_{\text {iso }}$	3750	$\mathrm{V}_{\text {rms }}$
	Supply Voltage	V_{cc}	-0.5~7	V
	Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-55 \sim+85$	${ }^{\circ} \mathrm{C}$
	Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
	Lead Solder Temperature *2	$\mathrm{T}_{\text {sol }}$	260	${ }^{\circ} \mathrm{C}$

1. Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
2. $260^{\circ} \mathrm{C}$ for 10 seconds. Refer to Lead Free Reflow Profile.

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Input						
Input Forward Voltage	V_{F}	-	-	1.8	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{Ta}$	-	-1.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{IF}=1.6 \mathrm{~mA}$
Input Reverse Voltage	$B V_{\text {R }}$	5.0	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	60	-	pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
Detector						
Current transfer ratio	CTR	400	1800	5000	\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{Vo}=0.4 \mathrm{~V} \end{aligned}$
		500	2000	2600		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{Vo}=0.5 \mathrm{~V} \end{aligned}$
Logic low output voltage output voltage	$\mathrm{V}_{\text {OL }}$	-	0.06	0.1	V	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \mathrm{I}_{0}=2 \mathrm{~mA}$
				0.4		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{o}}=8 \mathrm{~mA}$
		-				$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \mathrm{I}_{0}=15 \mathrm{~mA}$
			0.2			$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} ; \mathrm{Vcc}=4.5 \mathrm{~V} ; \mathrm{I}_{0}=24 \mathrm{~mA}$
Logic high output current	Іон	-	0.3	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{Vo}_{\mathrm{o}}=\mathrm{Vcc}=18 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Logic low supply current	$\mathrm{I}_{\text {ccL }}$	-	0.7	1.5	mA	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA}, \mathrm{~V}_{0}=\mathrm{open} \\ & (\mathrm{Vcc}=18 \mathrm{~V}) \end{aligned}$
Logic high supply current	Icch	-	0.07	10	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{open}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & (\mathrm{Vcc}=18 \mathrm{~V}) \end{aligned}$

[^0]LITEONI ${ }^{\circ}$
OPTOELECTRONICS

Data Sheet

5. SWITCHING SPECIFICATION

$\mathrm{T}_{\mathrm{A}}=\mathbf{0} \sim 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$	-	-	25	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{~K} \Omega$
		-	-	3		$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=270 \Omega$
Propagation Delay Time to High Output Level	tplh	-	-	60	$\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{~K} \Omega$
		-	-	20		$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=270 \Omega$
Logic High Common Mode Transient Immunity	\|CM ${ }_{\text {H }}$	1	10	-	KV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} ;\left\|\mathrm{V}_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} \Omega \end{aligned}$
Logic Low Common Mode Transient Immunity	$\mid \mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$	1	10	-	KV/ $/ \mathrm{s}$	$\begin{aligned} & I_{F}=1.6 \mathrm{~mA} ;\left\|\mathrm{V}_{\mathrm{CM}}\right\|=10 \mathrm{~V}_{p-\mathrm{p}} \\ & \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{~K} \Omega \end{aligned}$

*All Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition
Input-Output Insulation Leakage Current	$\mathrm{I}_{-\mathrm{O}}$	-	-	1.0	$\mu \mathrm{~A}$	$45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}$, $\mathrm{V}_{1-\mathrm{O}}=3 \mathrm{kV} \mathrm{DC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Withstand Insulation Test Voltage	$\mathrm{V}_{\text {ISO }}$	3750	-	-	$\mathrm{V}_{\mathrm{RMS}}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input-Output Resistance	R_{LO}	-	10^{12}	-	Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V} \mathrm{DC}$

*All Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes

1. AC For 1 Minute, R.H. $=40 \sim 60 \%$. Isolation voltage shall be measured using the following method.
(1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
(2) The isolation voltage tester with zero-cross circuit shall be used.
(3) The waveform of applied voltage shall be a sine wave.
2. For 10 Seconds
3. Current Transfer Ratio (CTR) is defined as the ration of output collector current, lo, to the forward LED input current, IF, times 100\%.

4. Pin 7 open.

5. Instantaneous common mode rejection voltage "output (1)" represents a common mode voltage variation that can hold the output above (1) level (Vo>2.0V).Instantaneous common mode rejection voltage "output (0)" represents a common mode voltage variation that can hold the output above (0) level ($\mathrm{V} 0<0.8 \mathrm{~V}$).
6. Device considered a two terminal device. Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.

Data Sheet

Photocouplers LTV-0701

7. CHARACTERISTICS CURVES

Figure 1: DC and pulsed transfer characteristics

Figure 2: Input current vs. forward voltage

Figure 3: Logic high output current vs. temperature

Figure 4: Current transfer ratio vs. input current

Figure 5: Current transfer ratio vs. temperature

Figure 6: Logic low supply current vs. input forward curren

Figure 7: Propagation delay time vs. temperature

Figure 8: Forward voltage vs. temperature

Data Sheet

8. Switching Time Test Circuit

Figure 1: Single Channel Test Circuit for tphl and tplh

Figure 2: Single Channel Test Circuit for Common Mode Transient Immunity

Data Sheet

9. TEMPERATURE PROFILE OF SOLDERING

9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\mathrm{smin}}$) - Temperature Max ($\mathrm{T}_{\text {Smax }}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{aligned} & 217^{\circ} \mathrm{C} \\ & 60 \mathrm{sec} \end{aligned}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

9.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

10. Notes:

Specifications of the products displayed herein are subject to change without notice.
The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
HCPL-2201-300 TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM HCPL2630SM PS9817A-1-F3-AX TLP2766A(E
TLP2766A(LF4,E EL816S2(C)(TU)-F TLP281-4 TLP2363(V4-TPR,E PS9121-F3-AX PS9123-F3-AX HCPL2531S HCPL2631SD HCPL-
4661-500E TLP118(TPL,E) TLP2309(E(T TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198
TLP2309(TPL,E) TLP2355(TPL,E TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS2805-4 IS181GR ICPL2631 ICPL2630
ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2561L2-1-F3-A PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V

[^0]: *All Typical at $T_{A}=25^{\circ} \mathrm{C}$

