
 LTV-155E

Spec No. :DS70-2013-0016
Effective Date: 01/10/2019
Revision: C

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Photocoupler LTV-155E series

1.0 Amp Output Current IGBT Gate Drive Optocoupler with Rail-to-Rail Output Voltage, High CMR.

1. DESCRIPTION

The LTV-155E optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.0A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 50 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-155E series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 1.0 A maximum peak output current
- 0.8 A minimum peak output current

■ Rail-to-rail output voltage

- 200 ns maximum propagation delay
- 100 ns maximum propagation delay difference
- $35 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $I_{\mathrm{CC}}=3.0 \mathrm{~mA}$ maximum supply current

■ Wide operating range: 10 to 30 Volts (V_{CC})

- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- MSL Level 1

■ Safety approval:

- UL/ cUL Recognized 3750 Vms $_{\text {RMS }} 1 \mathrm{~min}$
- IEC/EN/DIN EN 60747-5-5 V Iorm $=565$ V peak

1.2 Applications

- Plasma Display Panel .
- IGBT/MOSFET gate drive

■ Uninterruptible power supply (UPS)

- Industrial Inverter
- Induction heating

Functional Diagram
Pin No. and Internal connection diagram

Truth Table

LED	High side	Low side	Vo
OFF	OFF	ON	Low
ON	ON	OFF	High

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between Pin 4 and 6 .

Photocoupler
 LTV-155E series

2. PACKAGE DIMENSIONS

LAND PATTERN RECOMMENDATION

Part No : LTV-155E

Notes:

1. The first digit is year date code, second and third digit are work week
2. Factory identification mark (W :China-CZ)
3. " 4 " or "V" for VDE option

Dimensions are all in Millimeters.

Photocoupler LTV-155E series

3. TAPING DIMENSIONS

LTV-155E

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$12 \pm 0.3(0.47)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$5.5 \pm 0.1(0.217)$
	P_{2}	$2 \pm 0.1(0.079)$

Quantities Per Reel

Package Type	LTV-155E series
Quantities (pcs)	3000

Photocoupler LTV-155E series

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	
Output IC Junction Temperature	TJ		125	${ }^{\circ} \mathrm{C}$	
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	
Average Forward Input Current	$\mathrm{I}_{\text {F }}$		25	mA	
Reverse Input Voltage	$V_{\text {R }}$		5	V	
Peak Transient Input Current	$\mathrm{IF}_{\text {(TRAN }}$		1	A	1
"High" Peak Output Current	І-H(PEAK $^{\text {a }}$		1.0	A	2
"Low" Peak Output Current	lol(PEAK)		1.0	A	2
Input Current (Rise/Fall Time)	$\mathrm{t}_{\text {r(IN) }} / \mathrm{t}_{\mathrm{f}(\mathbb{N})}$		500	ns	3
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-0.5	V_{cc}	V	
Power Dissipation	P_{1}		40	mW	
Output Power Dissipation	Po		250	mW	
Total Power Dissipation	P_{T}		295	mW	
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$		260	${ }^{\circ} \mathrm{C}$	

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: Note: A ceramic capacitor ($0.1 \mu \mathrm{~F}$) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width $(\mathrm{PW}) \leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Operating Temperature	T_{A}	-30	105	${ }^{\circ} \mathrm{C}$
Supplier Voltage	V_{CC}	10	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\text { OFF })}$	-3.0	0.8	V

4.3 Electrical optical characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	-
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-1.237	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Reverse Voltage	$B V_{\text {R }}$	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	-	-
	Input Threshold Current (Low to High)	$I_{\text {FLH }}$	-	1.9	5	mA	$\mathrm{V} \mathrm{O}>5 \mathrm{~V}, \mathrm{I}_{0}=0 \mathrm{~A}$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$	-	-
	Input Capacitance	$\mathrm{CIN}_{\text {IN }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply Current	Icch	-	1.9	3.0	mA	Output Open, $I_{F}=7 \text { to } 16 \mathrm{~mA}$	4, 5	-
	Low Level Supply Current	Iccl	-	2.1	3.0	mA	Output Open, $V_{F}=-3 \text { to }+0.8 \mathrm{~V}$		-
			-	-	-0.3	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	16	1
			-	-	-0.8		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-3 \mathrm{~V}\right)$		2
	Low level output current	loL	0.3	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	17	1
			0.8	-	-		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+3 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.6 \end{gathered}$	$\begin{aligned} & V_{C C} \\ & 0.35 \end{aligned}$	-	V	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	-
	Low level output voltage	VoL	-	$\begin{aligned} & V_{E E+} \\ & 0.25 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.4 \end{gathered}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}$	3, 15	-
	UVLO Threshold	Vuvlo+	-	7.8	-	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvlo.	-	6.7	-	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-
	UVLO Hysteresis	UVLO ${ }_{\text {Hys }}$	-	1.1	-	V		-	-

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	$\mathrm{t}_{\text {PHL }}$	50	120	200	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=47 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=3 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 11,12 \\ 20 \end{gathered}$	-	
Propagation Delay Time to Low Output Level	tplh	50	110	200				-	
Pulse Width Distortion	PWD	-	10	70				-	
Propagation delay difference between any two parts or channels	PDD	100	-	100				3	
Output Rise Time (20 to 80\%)	Tr	-	35	-			20	-	
Output Fall Time (80 to 20\%)	Tf	-	35	-				-	
Common mode transient immunity at high level output	\|CMH		35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	21	1
Common mode transient immunity at low level output	\|CML		35	50	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).

Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{o}}<1 \mathrm{~V}$).

Note 3: The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two parts series parts under same test conditions.

Photocoupler LTV-155E series

6. ISOLATION CHARACTERISTICS

Parameter	Test Conditions	Symbol	Min.	Typ	Max.	Unit	Note
Withstand Insulation Test	$\mathrm{RH} \leq 40-60 \%$,						
Voltage	$\mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {ISO }}$	3750	-	-	V	1,2
Input-Output Resistance	$\mathrm{V}_{\mathrm{l}-\mathrm{O}}=500 \mathrm{~V}$ DC	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	-	10^{12}	-	Ω	1
Input-Output Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.92	-	pF	1

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1 and 3 are shorted together and pins 4,5 and 6 are shorted together.
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $4500 \mathrm{~V}_{\text {RMs }}$ for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge
.

Photocoupler LTV-155E series

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1: High output rail voltage vs. Temperature

Figure 3: Vol vs. Temperature

Figure 5: Icc vs. Vcc

Figure 2: $\mathrm{V}_{\text {он }}$ vs. Temperature

Figure 4: Icc vs. Temperature

Figure 6: IfLh hysteresis

Figure 7: $I_{\text {FLH }}$ vs. Temperature

Figure 9: Propagation delays vs. IF

Figure 11: Propagation delays vs. R_{g}

Photocoupler LTV-155E series

Figure 8: Propagation delays vs. Vcc

Figure 10: Propagation delays vs. Temperature

Figure 12: Propagation delays vs. C_{g}

Figure 13: Input current vs. Forward voltage

Figure 14 : Vон Test Circuit

Figure 16 : Іон Test Circuit

Figure 18 : Iflh Test Circuit

Figure 15 : Vol Test Circuit

Figure 17 : lol Test Circuit

Figure 19 : UVLO Test Circuit

LITEONI ${ }^{\circ}$
OPTOELECTRONIC

Data Sheet

Photocoupler LTV-155E series

Figure 20 : tr, tr, tplh and tphl Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

Data Sheet

Photocoupler LTV-155E series

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min ($T_{\text {Smin }}$)	$150^{\circ} \mathrm{C}$
- Temperature Max ($\left.T_{\text {Smax }}\right)$	$200^{\circ} \mathrm{C}$
- Time (min to max) (ts)	$90 \pm 30 \mathrm{sec}$
Soldering zone	
- Temperature (T_{L})	$217^{\circ} \mathrm{C}$
- Time (t_{L})	60 sec
Peak Temperature ($\left.T_{P}\right)$	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec} \mathrm{max}$.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

LITEONI
OPTOELECTRONICS

Data Sheet

Photocoupler LTV-155E series

8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

Photocoupler LTV-155E series

9. NAMING RULE

Part Number Options
LTV-155E
LTV155E-V

Definition of Suffix	Remark
"155E"	LiteOn model name
"no suffix"	Pin 1 location at upper right of the tape
"V"	VDE approved option

10. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET Output Optocouplers category:
Click to view products by Lite-On manufacturer:

Other Similar products are found below :
TLP598GAF TLP4026G(F) TLP152(TPL,E(T TLP4176A(F TLP3147(F TLP3146(F TLP3147(TP,F TLP3149(TP,F TLP4590A(D4,F TLP4590A(D4LF5,F TLP4590A(D4LF1,F TLP4590A(LF1,F TLP4590AF(LF4,F LTV-817-L LTV-817M-D LTV-817S-TA1-L TIL111 TIL191 MCT6X MCT6XSM TLP170G(F) TLP197GA(F) TLP227GA-2(TP1,F) TLP797J(F) 4N35X 4N35XSM ILD1XSM ILQ2X IS357A ISP521-4XSM ISP620-1XSM ISP621-4X ISP621-4XSM SFH617A-3XSM SFH620A-3X 6N135S-TA1-L CNY17-2-L CNY17-4-L TIL111XSM TIL193 TIL199 CNY17-4X CNY17-1X IS355 TLP209D(F) TLP3122 TLP3544(F) TLP592A(F) TLP3546(F) TLP3545(F)

