。

Spec No. :DS70-2012-0008
Effective Date: 02/26/2021
Revision: H

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

Data Sheet

3.0 Amp Output Current IGBT Gate Drive Optocoupler with Rail-to-Rail Output Voltage, High CMR.

1. DESCRIPTION

The LTV-3120 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 3.0A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/100 A. For IGBTs with higher ratings, the LTV- 3120 series can be used to drive a discrete power stage which drives the IGBT gate.

The Photocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+110^{\circ} \mathrm{C}$.

1.1 Features

- ± 3.0 A maximum peak output current
- Rail-to-rail output voltage
- Propagation delay time : $\mathrm{T}_{\text {PHL }}=500 \mathrm{~ns}$ (max) , $\mathrm{T}_{\text {PLH }}=500 \mathrm{~ns}$ (max)
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- $35 \mathrm{kV} / \mathrm{us}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{Cc}}=3.0 \mathrm{~mA}$ maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+110^{\circ} \mathrm{C}$.
- MSL Level 1
- Safety approval:

UL/ cUL Recognized 5000 V $_{\text {RMS }} / 1 \mathrm{~min}$
IEC/EN/DIN EN 60747-5-5 VIORM $=630$ Vpeak

1.2 Applications

- Plasma Display Panel .
- IGBT/MOSFET gate drive
- Industrial Inverter
- Induction heating
- Uninterruptible power supply (UPS)

Functional Diagram

Truth Table

LED	High side	Low side	Vo
OFF	OFF	ON	Low
ON	ON	OFF	High

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin 5 and 8 .

2. PACKAGE DIMENSIONS

2.1 LTV-3120

2.3 LTV-3120S

Notes:

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand, W : China - CZ).
*4. VDE Identification (Option)

Photocoupler
 LTV-3120 series

3. TAPING DIMENSIONS

3.1 LTV-3120S-TA

3.2 LTV-3120S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.295)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$12 \pm 0.1(0.47)$

3.3 Quantities Per Reel

Package Type	LTV-3120 series
Quantities (pcs)	1000

Data Sheet

Photocoupler LTV-3120 series

4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Description	Symbol	Characteristics	Unit
Installation classification per DIN VDE 0110, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 450 \mathrm{~V}_{\mathrm{rms}}$		$\begin{aligned} & \text { I-IV } \\ & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		55/115/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	VIoRM	630	$V_{\text {peak }}$
Input-to-Output Test Voltage, Method b *a $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1181	$V_{\text {peak }}$
Input-to-Output Test Voltage, Method a *a $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1008	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	6000	$V_{\text {peak }}$
```Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current *b Output Power *b```	Ts   $\mathrm{I}_{\mathrm{S}, \text { INPUT }}$   $\mathrm{Ps}_{\mathrm{s}, \text { output }}$	$\begin{gathered} 175 \\ 25 \\ 250 \end{gathered}$	${ }^{\circ} \mathrm{C}$ mA   mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$	RS	$\geq 10^{9}$	$\Omega$

*a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.
*b. Ratings apply to all devices except otherwise noted in the Package column.

Part No. : LTV-3120 series

## 5. RATING AND CHARACTERISTICS

### 5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	-
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+110	${ }^{\circ} \mathrm{C}$	-
Output IC Junction Temperature	TJ	-	125	${ }^{\circ} \mathrm{C}$	-
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	-
Average Forward Input Current	$\mathrm{I}_{\text {F }}$	-	20	mA	-
Reverse Input Voltage	$V_{\text {R }}$	-	5	V	-
Peak Transient Input Current	$\mathrm{IF}_{\text {(TRAN })}$	-	1.0	A	1
"High" Peak Output Current	ІІн(PEAK)	-	3.0	A	2
"Low" Peak Output Current	lol(PEAK)	-	3.0	A	2
Input Current (Rise/Fall Time)	$\mathrm{t}_{\text {(IN }} / \mathrm{t}_{\text {f(IN }}$	-	500	ns	3
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-	35	V	-
Power Dissipation	$\mathrm{P}_{1}$	-	45	mW	-
Output Power Dissipation	Po	-	700	mW	-
Total Power Dissipation	$\mathrm{P}_{\text {T }}$	-	745	mW	-
Lead Solder Temperature (10s)	$\mathrm{T}_{\text {sol }}$	-	260	${ }^{\circ} \mathrm{C}$	-

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: Note: A ceramic capacitor ( $0.1 \mu \mathrm{~F}$ ) should be connected between pin 8 and pin 5 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width (PW) $\leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns

### 5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	110	${ }^{\circ} \mathrm{C}$
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	15	30	V
Input Current (ON)	$\mathrm{I}_{\text {FL(ON) }}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	0	0.8	V

### 5.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	$\mathrm{V}_{\mathrm{F}}$	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	13	-
	Input Forward Voltage   Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-2.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Reverse Voltage	$B V_{\text {R }}$	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	-	-
	Input Threshold Current (Low to High)	IfLH	-	1.8	5	mA	$\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	$\begin{gathered} 6, \\ 7,18 \end{gathered}$	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	-	-
	Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply   Current	Icch	-	1.7	3.0	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$	4, 5	-
	Low Level Supply Current	$\mathrm{I}_{\mathrm{CLL}}$	-	2.0	3.0	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$		-
	High level output current	ІО	-	-	-1.0	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	11, 16	1
			-	-	$-3.0$		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}\right)$		2
	Low level output current	lot	1.0	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	12, 17	1
			3.0	-	-		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+4 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.1 \end{gathered}$	-	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$	$\begin{gathered} 1,2, \\ 14 \end{gathered}$	-
	Low level output voltage	VoL	-	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.1 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.25 \end{gathered}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{0}=100 \mathrm{~mA}$	3, 15	-
	UVLO Threshold	Vuvio+	11.0	12.7	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvlo.	9.5	11.2	12.0	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	UVLO Hysteresis	UVLOHys	-	1.5	-	V	-		-

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

## 6. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to   High Output Level	tpıH	50	-	500	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=10 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{gathered} 8,9,10 \\ 20 \end{gathered}$	-
Propagation Delay Time to Low Output Level	tphL	50	-	500				-
Pulse Width Distortion	PWD	-	-	100				-
Propagation delay difference between any two parts or channels	PDD	-100	-	100				3
Output Rise Time (10 to 90\%)	Tr	-	35	-			20	-
Output Fall Time (90 to 10\%)	Tf	-	35	-				-
Common mode transient immunity at high level output	\| $\mathrm{CM}_{\mathrm{H}} \mid$	35	50	-	kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	21	1
Common mode transient immunity at low level output	\| $\mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$	35	50	-	kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: $\mathrm{CM}_{H}$ is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ( $\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$ ).
Note 2: $\mathrm{CM}_{\mathrm{L}}$ is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ( $\mathrm{V}_{\mathrm{o}}<1 \mathrm{~V}$ ).
Note 3: The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two parts series parts under same test conditions.

5

## Data Sheet

## Photocoupler LTV-3120 series

## 7. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation Test   Voltage	$\mathrm{V}_{\text {ISO }}$	5000	-	-	V	$\mathrm{RH} \leq 40 \%-60 \%$,   $\mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1,2
Input-Output Resistance	$\mathrm{R}_{\text {I-O }}$	-	$10^{12}$	-	$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V} \mathrm{DC}$	1
Input-Output Capacitance	$\mathrm{C}_{\text {I-O }}$	-	0.92	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)

Note 1: Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.
Note 2: According to UL1577, each Photocoupler is tested by applying an insulation test voltage $6000 \mathrm{~V}_{\text {RMS }}$ for one second (leakage current less than 10 uA ). This test is performed before the $100 \%$ production test for partial discharge
$\square$

## Photocoupler LTV-3120 series

## 8. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS



Figure 1: High output rail voltage vs. Temperature


Figure 3: Vol vs. Temperature


Figure 5: Icc vs. Vcc


Figure 2: $\mathrm{V}_{\text {он }}$ vs. Temperature


Figure 4: Icc vs. Temperature


Figure 6: IfLH Hysteresis


Figure 7: $I_{\text {FLH }}$ vs. Temperature


Figure 9: Propagation Delays vs. If


Figure 11: $\mathrm{V}_{\mathrm{OH}}$ vs. $\mathrm{loph}^{\prime}$


Figure 8: Propagation Delays vs. Vcc


Figure 10: Propagation Delays vs. Temperature


Figure 12: Vol vs. Iopl

## Data Sheet

Photocoupler LTV-3120 series

Figure 13 : $I_{F}$ vs. $V_{F}$


Figure 14 : Voн Test Circuit


Figure 16 : Іон Test Circuit


Figure 15 : Vol Test Circuit


Figure 17 : lol Test Circuit


Figure 18 : Iflh Test Circuit


Figure 20 : tr, tf, tplh and tphl Test Circuit and Waveforms


Figure 21 : CMR Test Circuit and Waveforms

## Data Sheet

## Photocoupler <br> LTV-3120 series

## 9. TEMPERATURE PROFILE OF SOLDERING

### 9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min ( $T_{\text {Smin }}$ )	$150^{\circ} \mathrm{C}$
- Temperature Max ( $T_{\text {smax }}$ )	$200^{\circ} \mathrm{C}$
- Time (min to max) (ts)	$90 \pm 30 \mathrm{sec}$
Soldering zone	
- Temperature ( $T_{L}$ )	$217^{\circ} \mathrm{C}$
- Time (t $\mathrm{t}_{\mathrm{L}}$ )	$60 \sim 100 \mathrm{sec}$
Peak Temperature ( $T_{P}$ )	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec} \mathrm{max}$.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$



LITEON: ${ }^{\circ}$
OPTOELECTRONICS

ㅁ

## Photocoupler LTV-3120 series

9.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

Part No. : LTV-3120 series

Rev.: -

## 10. NAMING RULE

Part Number Options
LTV-3120
LTV-3120M
LTV-3120S-TA
LTV-3120S-TA1
LTV3120-V
LTV3120M-V
LTV3120STA-V
LTV3120STA1-V


Definition of Suffix	Remark
"3120"	LiteOn model name
"No Suffix"	Dual-in-Line package   clearance distance 7 mm typical
"M"	Wide lead spacing package   clearance distance 8 mm typical
"S"	Surface mounting package   clearance distance 8 mm typical
"TA"	Pin 1 location at lower right of the tape

## 11. Notes:

Specifications of the products displayed herein are subject to change without notice.
The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
CPC1590P VO3120-X019T TLP5772H(TP4,E TLP5772H(TP,E TLP5771H(TP4,E TLP5771H(D4,E TLP5774H(D4,E TLP5771H(E TLP5772H(D4LF4,E TLP5774H(LF4,E TLP5771H(D4LF4,E TLP5771H(LF4,E TLP5214A(E(O FOD3125SD FOD8482T LTV-3120S-TA1-H LTV-332J-TP1 PC923LRNIP0F HCPL-0630-500E(TOKMAS) TLP719F(D4-TP,F) TLP5702(D4-TP,E(T TLP105(TPL,F) TLP2301(GB-TPL,E(T TLP715(D4-TP,F) TLP2348(TPL,E(T 6N137S KPC410 0E ELM600(TA) 6N138M 6N137M ELS3120P(TA)-VG 6N137-500E-JSM H11L1S-TA1-L CY4N33S(TP1) CY4N33 PC923LRNSZ0F SL0601 6N136S 6N137(SL)(T1) ELS680P(TA)-VG H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL-6730 HCPL-J312-000E LTV-3120S-TA1 TLP155E(TPL,E) TLP2345(E(T TLP2348(E(T TLP350H(F)

