\square

Spec No. :DS70-2022-0017
Effective Date: 02/23/2022
Revision: -

LITE-ON DCC

RELEASE

Photocoupler LTV-5314 series

1.5 Amp Output Current IGBT Gate Drive Photocoupler with Rail-to-Rail Output Voltage in Stretched LSO5

Description

The LTV-5314 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The Photocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+110^{\circ} \mathrm{C}$.

1.1 Features

1.5 A maximum peak output current
1.0 A minimum peak output current

Rail-to-rail output voltage
150 ns maximum propagation delay
100 ns maximum propagation delay difference
Under Voltage Lock-Out protection (UVLO) with hysteresis
$35 \mathrm{kV} /$ us minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$
Wide operating range: 10 to 30 Volts (V_{CC})
Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+110^{\circ} \mathrm{C}$.
Safety approval:
UL1577
IEC/EN/DIN EN 60747-5-5
HALOGEN FREE

1.2 Applications

IGBT/MOSFET gate drive
Uninterruptible power supply (UPS)
Industrial Inverter
AC/Brushless DC motor drives
Switching power suppliers

Functional Diagram

Truth Table

LED			
High side	Lowe side	Vo	
OFF	OFF	ON	Low
ON	ON	OFF	High

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between Pin 4 and 6.

LITECON1
OPTOELECTRONICS

Data Sheet
 Photocoupler LTV-5314 series

2. PACKAGE DIMENSIONS

2.1 LTV-5314
2.2 LTV-5314W

Notes:

1. Year date code.
2. 2-digit work week.
3. Factory identification mark (X : Tianjin).
4. "4" or "V" for VDE option.

* Dimensions are in Millimeters and (Inches).

Photocoupler
 LTV-5314 series

3. TAPING DIMENSIONS

3.1 LTV-5314-TP

3.3 LTV-5314-TP1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.47)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.217)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$8 \pm 0.1(0.315)$

3.5 Quantities Per Reel

Package Type	LTV-5314 series
Quantities (pcs)	3000

Photocoupler LTV-5314 series

4. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	LTV-5314	Unit
Climatic Classification	-	40/110/21	-
Pollution Degree (DIN VDE 0110/1.89)	-	2	-
Maximum Working Insulation Voltage	VIORM	1230	$V_{\text {peak }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2310	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $V_{\text {IORM }} \times 1.6=V_{\text {PR }}$, Type and Sample Test, $t m=10 \mathrm{sec}$, Partial discharge < 5 pC	$V_{\text {PR }}$	1970	$V_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	8000	$V_{\text {peak }}$
Case Temperature	Ts	175	${ }^{\circ} \mathrm{C}$
Input Current	$\mathrm{I}_{\text {S, INPUT }}$	45	mA
Output Power	Ps, output	450	mW
Insulation Resistance at TS, $\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.

4.1 Insulation and Safety Related Specification

Parameter	Symbol	LTV-5314	Unit	Test Condition
Minimum External Air Gap (External Clearance)	$\mathrm{L}(101)$	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Clearance)	$\mathrm{L}(102)$	8.0	mm	Measured from input terminals to output terminals, shortest distance
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN EN 60112 (VDE 0303 Teil 11)

Photocoupler LTV-5314 series

5. RATING AND CHARACTERISTICS

5.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	-
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+110	${ }^{\circ} \mathrm{C}$	-
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}\right.$	0	35	V	-
Average Forward Input Current	I_{F}	-	20	mA	-
Peak Transient Input Current	$\mathrm{I}_{\text {F(TRAN) }}$	-	1.0	A	1
Reverse Input Voltage	V_{R}	5	-	V	-
"High" Peak Output Current	$\mathrm{I}_{\text {OH(PEAK) }}$	-	1.5	A	2
"Low" Peak Output Current	$\mathrm{I}_{\mathrm{OL} \text { (PEAK) }}$	-	1.5	A	2
Output Voltage	$\mathrm{V}_{\mathrm{O}(\text { PEAK }}$	-	V_{CC}	V	-
Input Power Dissipation	P_{I}	-	40	mW	-
Output IC Power Dissipation	P_{O}	-	450	mW	-
Lead Solder Temperature	$\mathrm{T}_{\text {sol }}$	-	260	${ }^{\circ} \mathrm{C}$	-

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: A ceramic capacitor ($1 \mu \mathrm{~F}$) should be connected between pin 6 and pin 4 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width $(P W) \leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$

5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	Note
Supply Voltage	$\mathrm{V}_{\text {CC }}$	10	30	V	
Input Current (ON)	$\mathrm{I}_{\text {FL(ON) }}$	3	10	mA	1
Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	0	0.8	V	
Peak Low-Level Output Current	$\mathrm{I}_{\text {OPH }}$	-	-1.5	A	
Peak Low-Level Output Current	$\mathrm{I}_{\text {OPL }}$	-	1.5	A	
Operating Frequency	f	-	50	kHz	

Note 1: The rise and fall times of the input on-current should be less than $0.5 \mu \mathrm{~s}$

5.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.45	1.6	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1	-
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$	-	-2.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-	-
	Input Threshold Current (Low to High)	Iflh	-	1	5	mA	$\mathrm{V}_{\mathrm{cc}}=10-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}>1 \mathrm{~V}$	4,18	-
	Input Reverse Current	$I_{\text {R }}$	-	-	10	uA	$V_{R}=5 \mathrm{~V}$	-	-
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\text {FHL }}$	0.8	-	-	V	$\mathrm{V}_{\mathrm{CC}}=10-30 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}<1 \mathrm{~V}$	-	-
	Input Capacitance	$\mathrm{CIIN}^{\text {I }}$	-	33	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$	-	-
Output	High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	-	1.7	3	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$	5,6	-
	Low Level Supply Current	$\mathrm{I}_{\text {ccl }}$	-	2.0	3	mA	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$		-
	High level output current	$\mathrm{I}_{\text {OH }}$	-	-	-0.4	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	10,16	1
			-	-	-1.5		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-4 \mathrm{~V}\right)$		2
	Low level output current	loL	0.4	-	-	A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	9,17	1
			1.5	-	-		$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+4 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.3 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} . \\ 0.1 \end{gathered}$	-	V	$I_{F}=10 \mathrm{~mA}, \mathrm{I}_{0}=-100 \mathrm{~mA}$	8,14	-
	Low level output voltage	VoL	-	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}+} \\ & 0.25 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.4 \end{gathered}$	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}$	7,15	-
	UVLO Threshold	Vuvio+	6.9	7.8	8.7	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	19	-
		Vuvio.	5.9	6.7	7.5	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	UVLO Hysteresis	UVLOhys	-	1.1	-	V	-		-

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V} \mathrm{CC}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

Part No. : LTV-5314 series BNC-OD-FC002/A4
Rev. :-

Photocoupler LTV-5314 series

6. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	tplh	50	90	150	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=25 \mathrm{nF}, \\ & \mathrm{f}=25 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=3 \text { to } 10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=10 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	$\begin{aligned} & 11,12, \\ & 13,20 \end{aligned}$	-
Propagation Delay Time to Low Output Level	tphL	50	110	150				-
Pulse Width Distortion	PWD	-	-	50				-
Propagation delay difference between any two parts or channels	PDD	-100	-	100				3
Output Rise Time (10 to 90\%)	Tr	-	20	-			20	-
Output Fall Time (90 to 10\%)	Tf	-	25	-				-
Common mode transient immunity at high level output	\|CM ${ }_{\text {H }}$	30	-	-	kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	21	1
Common mode transient immunity at low level output	$\mid \mathrm{CM}_{\mathrm{L}}{ }^{\text {l }}$	30	-	-	kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).
Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{O}}<1 \mathrm{~V}$).
Note 3: The difference between tpHL and tpLH between any two parts series parts under same test conditions.

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 1. IF vs. V_{F}

Figure 3. Po vs. Temperature

Figure 5. Iccl vs. Temperature

Figure 2. If vs. Temperature

Figure 4. IfLH vs. Temperature

Figure 6. Іссн vs. Temperature

Figure 7. Vol vs. Temperature

Figure 9. Vol vs. Iopl

Figure 11. Propagation Delay Time vs. Temperature

Figure 8. (Vсс-Vон) vs. Temperature

Figure 10. Vон vs. Іорн

Figure 12. Propagation Delay Time vs. IF

Figure 13. Propagation Delay Time vs. Vcc

Figure 14 : Voн Test Circuit

Figure 16 : Іон Test Circuit

Data Sheet

Photocoupler LTV-5314 series

Figure 15 : Vol Test Circuit

Figure 17 : lol Test Circuit

Figure 18 : IfLH Test Circuit
Figure 19 : Uvlo Test Circuit

Figure 20 : tr, tf, tpLH and tpHL Test Circuit and Waveforms

Figure 21 : CMR Test Circuit and Waveforms

Data Sheet

Photocoupler LTV-5314 series

8. ISOLATION CHARACTERISTIC

Parameter	Symbo	Device	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation	$\mathrm{V}_{\text {ISO }}$	LTV-5314	5000	-	-	V	$\mathrm{RH} \leq 40 \%-60 \%$,	1,2
Input-Output Resistance	$\mathrm{R}_{\text {t-O }}$	-	-	10^{12}	-	Ω	$\mathrm{V}_{\text {I-O }}=500 \mathrm{~V}$ DC	1
Input-Output Capacitance	$\mathrm{C}_{\text {I-O }}$	-	-	0.9	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 5.2)
Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage $6000 \mathrm{~V}_{\text {RMs }}$ for one second (leakage current less than 10 uA). This test is performed before the 100% production test for partial discharge

Data Sheet

Photocoupler LTV-5314 series

9. TEMPERATURE PROFILE OF SOLDERING

9.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\mathrm{smin}}$) - Temperature Max ($\mathrm{T}_{\mathrm{Smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6{ }^{\circ} \mathrm{C} / \mathrm{sec}$

LITEON ${ }^{\circ}$
OPTOELECTRONICS

Data Sheet

Photocoupler LTV-5314 series

9.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature:25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

9.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

Part No. : LTV-5314 series

10. NAMING RULE

	Lead Frame		Suffix option			Quantity
Part Number	Type	Clearance distance	Tape\&Reel Option	IEC/EN/DIN EN60747-5-5	Customer Code	
LTV-5314	Surface mount S-loop type	Min. 8mm	TP	-V	-	3000 pcs per reel
LTV-5314W	Surface mount W-loop type		TP1			

Example 1 : LTV-5314-TP1

Example 2 : LTV5314WTP1-V

> *Naming rule of VDE option : All "-" before -V be removed

11. Notes

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
$00028 \underline{00053 \mathrm{P} 0231} 56956 \underline{57.404 .7355 .5}$ LT4936 57.904.0755.0 5811-0902 5882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 59519000000131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8609-RDPP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 $020740000066010056460249-1-$ CUT-TAPE 0134220000 60713816 M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-21817149P 6131-220-21149P 6131-260-2358P

