Data Sheet

Photocouplers

LTV-T350 series

LTV-T350 series

2.5 Amp Output Current IGBT Gate Drive Optocoupler with Low Icc, High CMR.

1. DESCRIPTION

The LTV-T350 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AIGaAs LED optically coupled to an integrated circuit with a power output stage. The 2.5A peak output current is capable of directly driving most IGBTs with ratings up to $1200 \mathrm{~V} / 100 \mathrm{~A}$. For IGBTs with higher ratings, the LTV-T350 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.

1.1 Features

- 2.5 A maximum peak output current
- 500 ns maximum propagation delay
- 300 ns maximum propagation delay difference
- $25 \mathrm{kV} / \mathrm{us} \mathrm{minimum} \mathrm{Common} \mathrm{Mode} \mathrm{Rejection} \mathrm{(CMR)} \mathrm{at} \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $I_{C C}=3.0 \mathrm{~mA}$ maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature $-40^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$.
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 V $\mathrm{RMS} / 1 \mathrm{~min}$
- IEC/EN/DIN EN 60747-5-5 V IORM $=630$ Vpeak
1.2 Applications
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives

Functional Diagram

A $0.1 \mu \mathrm{~F}$ bypass Capacitor must be connected between Pin 5 and 8.

LED	$V_{\text {cc-GND }}$ (Turn-ON, +ve going)	$V_{c c}-G N D$ (Turn-OFF, -ve going)	V_{0}
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	Low
ON	$0-11.0 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	Low
ON	$11.0-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	Transition
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	High

Part No. : LTV-T350 series
Rev.:-

Data Sheet

Photocouplers

LTV-T350 series

2. PACKAGE DIMENSIONS

Notes:

*1. Year date code.
*2. 2-digit work week.
*3. Factory identification mark
(Y : Thailand).
Dimensions are in Millimeters and (Inches).

Photocouplers

LTV-T350 series

3. TAPING DIMENSIONS

3.1 LTV-T350S-TA

3.2 LTV-T350S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	$16 \pm 0.3(0.63)$
Pitch of sprocket holes	P_{0}	$4 \pm 0.1(0.15)$
Distance of compartment	F	$7.5 \pm 0.1(0.295)$
	P_{2}	$2 \pm 0.1(0.079)$
Distance of compartment to compartment	P_{1}	$12 \pm 0.1(0.47)$

3.3 Quantities Per Reel

Package Type	LTV-T350
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$	-
Operating Temperature	$\mathrm{T}_{\text {opr }}$	-40	+105	${ }^{\circ} \mathrm{C}$	-
Output IC Junction Temperature	TJ	-	125	${ }^{\circ} \mathrm{C}$	-
Total Output Supply Voltage	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}\right)$	0	35	V	-
Average Forward Input Current	$\mathrm{I}_{\text {F }}$	-	20	mA	-
Reverse Input Voltage	$V_{\text {R }}$	-	5	V	-
Peak Transient Input Current	$\mathrm{IF}_{\text {(TRAN }}$	-	1.0	A	1
"High" Peak Output Current	ІОН(PEAK)	-	2.5	A	2
"Low" Peak Output Current	lol(PEAK)	-	2.5	A	2
Input Current (Rise/Fall Time)	$\mathrm{t}_{\mathrm{r}(\mathbb{N})} / \mathrm{t}_{\mathrm{t}}(\mathbb{N})$	-	500	ns	3
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-	35	V	-
Power Dissipation	P_{1}	-	45	mW	-
Output Power Dissipation	Po	-	250	mW	-
Total Power Dissipation	P_{T}	-	295	mW	-
Lead Solder Temperature (10s)	$\mathrm{T}_{\text {sol }}$	-	260	${ }^{\circ} \mathrm{C}$	-

Note: Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.
Note: Note: A ceramic capacitor ($0.1 \mu \mathrm{~F}$) should be connected between pin 8 and pin 5 to stabilize the operation of a high gain linear amplifier. Otherwise, this Photocoupler may not switch properly. The bypass capacitor should be placed within 1 cm of each pin.

Note 1: Pulse width (PW) $\leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exponential waveform. Pulse width $\leq 0.3 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$
Note 3: The rise and fall times of the input on-current should be less than 500 ns

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	15	30	V
Input Current (ON)	$\mathrm{I}_{\mathrm{FL}(\text { ON })}$	7	16	mA
Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	-3.6	0.8	V

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note
Input	Input Forward Voltage	V_{F}	1.2	1.37	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	Input Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$		-1.237		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	Input Reverse Voltage	$B V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
	Input Threshold Current (Low to High)	1 FLH		2	5	mA	$\mathrm{V} \mathrm{O}>5 \mathrm{~V}, \mathrm{lo}_{0}=0 \mathrm{~A}$	21	
	Input Threshold Voltage (High to Low)	$\mathrm{V}_{\mathrm{FHL}}$	0.8	1.26		V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{l}_{0}=0 \mathrm{~A}$		
	Input Capacitance	$\mathrm{C}_{\text {IN }}$		33		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
Output	High Level Supply Current	$\mathrm{I}_{\mathrm{CHH}}$		1.8	3.0	mA	Output Open, $I_{F}=7 \text { to } 16 \mathrm{~mA}$		
	Low Level Supply Current	$I_{\text {ccl }}$		2	3.0	mA	Output Open, $V_{F}=-3 \text { to }+0.8 \mathrm{~V}$		
	High level output current	Іон	1.0	2.0		A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-3.5 \mathrm{~V}\right)$	19	1
			2.5				$\mathrm{V}_{C C}-\left(\mathrm{V}_{\mathrm{CC}}-6 \mathrm{~V}\right)$		2
	Low level output current	lot	1.0	2.0		A	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+1.5 \mathrm{~V}\right)$	20	1
			2.5				$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}\right)$		2
	High level output voltage	$\mathrm{V}_{\text {OH }}$	$\begin{gathered} V_{C C} \\ 2 \end{gathered}$	$\mathrm{V}_{\mathrm{cc}}-$ 1.1		V	$\begin{aligned} & I_{F}=10 \mathrm{~mA}, \\ & I_{0}=-100 \mathrm{~mA} \end{aligned}$	17	
	Low level output voltage	VoL		$\begin{gathered} \mathrm{V}_{\mathrm{EE}+} \\ 0.1 \end{gathered}$	1	V	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}$	18	
	UVLO Threshold	V UvLO+	11.0	12.7	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	22	
		Vuvlo-	9.5	11.2	12.0	V	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
	UVLO Hysteresis	UVLOHys		1.5		V			

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: Maximum pulse width $=50 \mu \mathrm{~s}$.
Note 2: Maximum pulse width $=10 \mu \mathrm{~s}$.

Part No. : LTV-T350 series BNC-OD-FC002/A4
Rev.:-

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Figure	Note	
Propagation Delay Time to High Output Level	$t_{\text {PLH }}$	50	220	500	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=\text { ground } \end{aligned}$	23		
Propagation Delay Time to Low Output Level	tphL	50	250	500					
Pulse Width Distortion	PWD		30	200					
Propagation delay difference between any two parts or channels	PDD	-200		200				3	
Output Rise Time (10 to 90\%)	Tr		30						
Output Fall Time (90 to 10\%)	Tf		30						
Common mode transient immunity at high level output	\|CMH		25	35		kV/us	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		1
Common mode transient immunity at low level output	\|CML		25	35		kV/ $/$ s	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		2

All Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: CM_{H} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic high state ($\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$).
Note 2: CM_{L} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($\mathrm{V}_{\mathrm{O}}<1 \mathrm{~V}$).
Note 3: The difference between tphl and tplu between any two parts series parts under same test conditions.

Part No. : LTV-T350 series
Rev.:-

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Condition	Note
Withstand Insulation Test Voltage	$\mathrm{V}_{\text {ISO }}$	5000	-	-	V	$\mathrm{RH} \leq 40-60 \%$, $\mathrm{t}=1 \mathrm{~min}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}$,	1,2
Input-Output Resistance	$\mathrm{R}_{-\mathrm{O}}$	-	10^{12}	-	Ω	$\mathrm{V}_{-\mathrm{O}}=500 \mathrm{~V} \mathrm{DC}$	1
Input-Output Capacitance	$\mathrm{C}_{-\mathrm{O}}$	-	0.90	-	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1

All Typical values at $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (Refer to 4.2)
Note 1: Device is considered a two terminal device: pins 1,2,3 and 4 are shorted together and pins $5,6,7$ and 8 are shorted together.
Note 2: According to UL1577, each Photocoupler is tested by applying an insulation test voltage $6000 \mathrm{~V}_{\text {RMs }}$ for one second (leakage current less than 10 uA). This test is performed before the 100% production test for partial discharge

Data Sheet

Photocouplers

LTV-T350 series

7. TYPICAL PERFORMANCE CURVES \& TEST CIRCUITS

Figure 17 : Voh Test Circuit

Figure 19 : Іон Test Circuit

Figure 18 : Vol Test Circuit

Figure 20 : lol Test Circuit

Figure 21 : Iflh Test Circuit

Figure 23 : tr, tf, tplh and tphl Test Circuit and Waveforms

Figure 24 : CMR Test Circuit and Waveforms

Data Sheet

Photocouplers

LTV-T350 series

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat - Temperature Min ($\mathrm{T}_{\text {smin }}$) - Temperature Max ($\mathrm{T}_{\mathrm{Smax}}$) - Time (min to max) (ts)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 90 \pm 30 \mathrm{sec} \end{gathered}$
Soldering zone - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 100 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$
Ramp-up rate	$3^{\circ} \mathrm{C} / \mathrm{sec}$ max.
Ramp-down rate	$3 \sim 6^{\circ} \mathrm{C} / \mathrm{sec}$

LITEONI
OPTOELECTRONICS

Data Sheet

Photocouplers

 LTV-T350 series8.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: $260+0 /-5^{\circ} \mathrm{C}$
Time: 10 sec .
Preheat temperature: 25 to $140^{\circ} \mathrm{C}$
Preheat time: 30 to 80 sec .

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: $380+0 /-5^{\circ} \mathrm{C}$
Time: 3 sec max.

9. NAMING RULE

Part Number Options
LTV-T350
LTV-T350M
LTV-T350S-TA
LTV-T350S-TA1
LTVT350-V
LTVT350M-V
LTVT350STA-V
LTVT350STA1-V

Definition of Suffix	Remark
"T350"	LiteOn model name
"No Suffix"	Dual-in-Line package clearance distance 7 mm typical
"M"	Wide lead spacing package clearance distance 8 mm typical
"S"	Surface mounting package clearance distance 8 mm typical
"TA"	Pin 1 location at lower right of the tape

10. Notes:

Specifications of the products displayed herein are subject to change without notice.
The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical instrumentation and application. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.

Part No. : LTV-T350 series

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
CPC1590P VO3120-X019T TLP5772H(TP4,E TLP5772H(TP,E TLP5771H(TP4,E TLP5771H(D4,E TLP5774H(D4,E TLP5771H(E TLP5772H(D4LF4,E TLP5774H(LF4,E TLP5771H(D4LF4,E TLP5771H(LF4,E TLP5214A(E(O FOD3125SD FOD8482T LTV-3120S-TA1-H LTV-332J-TP1 PC923LRNIP0F HCPL-0630-500E(TOKMAS) TLP719F(D4-TP,F) TLP5702(D4-TP,E(T TLP105(TPL,F) TLP2301(GB-TPL,E(T TLP715(D4-TP,F) TLP2348(TPL,E(T 6N137S KPC410 0E ELM600(TA) 6N138M 6N137M ELS3120P(TA)-VG 6N137-500E-JSM H11L1S-TA1-L CY4N33S(TP1) CY4N33 PC923LRNSZ0F SL0601 6N136S 6N137(SL)(T1) ELS680P(TA)-VG H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL-6730 HCPL-J312-000E LTV-3120S-TA1 TLP155E(TPL,E) TLP2345(E(T TLP2348(E(T TLP350H(F)

