

6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (600 Volts Peak)

The MOC3061, MOC3062 and MOC3063 devices consist of gallium arsenide infrared emitting diodes optically coupled to monolithic silicon detectors performing the functions of Zero Voltage Crossing bilateral triac drivers.
They are designed for use with a triac in the interface of logic systems to equipment powered from 115/240 Vac lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

- Simplifies Logic Control of 115/240 Vac Power
- Zero Voltage Crossing
- dv/dt of $1500 \mathrm{~V} / \mu \mathrm{s}$ Typical, $600 \mathrm{~V} / \mu \mathrm{s}$ Guaranteed
- To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.
Recommended for 115/240 Vac(rms) Applications:
- Solenoid/Valve Controls
- Temperature Controls
- Lighting Controls
- E.M. Contactors
- Static Power Switches
- AC Motor Starters
- AC Motor Drives
- Solid State Relays
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
INFRARED EMITTING DIODE			
Reverse Voltage	V_{R}	6	Volts
Forward Current - Continuous	I_{F}	60	mA
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Negligible Power in Output Driver Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{aligned} & 120 \\ & 1.41 \end{aligned}$	

OUTPUT DRIVER

Off-State Output Terminal Voltage	V DRM	600	Volts
Peak Repetitive Surge Current (PW $=100 \mu \mathrm{~s}, 120 \mathrm{pps})$	ITSM	1	A
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Derate above $25^{\circ} \mathrm{C}$		150	mW
		1.76	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

TOTAL DEVICE

Isolation Surge Voltage(1) (Peak ac Voltage, $60 \mathrm{~Hz}, 1$ Second Duration)	$\mathrm{V}_{\mathrm{ISO}}$	7500	$\mathrm{Vac}(\mathrm{pk})$
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	250 2.94	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-40 to +100	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{Stg}}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Soldering Temperature (10 s)	T_{L}	260	${ }^{\circ} \mathrm{C}$

1. Isolation surge voltage, $\mathrm{V}_{\mathrm{ISO}}$, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4,5 and 6 are common.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
INPUT LED					
Reverse Leakage Current $\left(V_{R}=6 \mathrm{~V}\right)$	$\mathrm{I}^{\text {R }}$	-	0.05	100	$\mu \mathrm{A}$
Forward Voltage $(\mathrm{IF}=30 \mathrm{~mA})$	V_{F}	-	1.3	1.5	Volts

OUTPUT DETECTOR ($\mathrm{I}_{\mathrm{F}}=0$)

Leakage with LED Off, Either Direction ${\left.\text { (Rated } \text { VRM }^{(1)}\right)}^{\text {R }}$	IDRM1	-	60	500	nA
Critical Rate of Rise of Off-State Voltage(3)	$\mathrm{dv} / \mathrm{dt}$	600	1500	-	$\mathrm{V} / \mathrm{\mu s}$

COUPLED

LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage $=3 \mathrm{~V}(2)$)	${ }^{\text {IFT }}$	-	-	$\begin{gathered} 15 \\ 10 \\ 5 \end{gathered}$	mA
Peak On-State Voltage, Either Direction $\left(\mathrm{I}_{\mathrm{TM}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=\text { Rated } \mathrm{I}_{\mathrm{FT}}\right)$	$\mathrm{V}_{\text {TM }}$	-	1.8	3	Volts
Holding Current, Either Direction	IH	-	250	-	$\mu \mathrm{A}$
Inhibit Voltage (MT1-MT2 Voltage above which device will not trigger.) ($\mathrm{I}_{\mathrm{F}}=$ Rated I_{FT})	VINH	-	5	20	Volts
Leakage in Inhibited State ($\mathrm{IF}_{\mathrm{F}}=$ Rated I_{FT}, Rated $\mathrm{V}_{\mathrm{DRM}}$, Off State)	IDRM2	-	-	500	$\mu \mathrm{A}$
Isolation Voltage ($\mathrm{f}=60 \mathrm{~Hz}, \mathrm{t}=1 \mathrm{sec}$)	VISO	7500	-	-	$\operatorname{Vac}(\mathrm{pk})$

1. Test voltage must be applied within dv/dt rating.
2. All devices are guaranteed to trigger at an I_{F} value less than or equal to max $I_{F T}$. Therefore, recommended operating I_{F} lies between max I_{FT} (15 mA for MOC3061, 10 mA for MOC3062, 5 mA for MOC3063) and absolute $\max \mathrm{I}_{\mathrm{F}}(60 \mathrm{~mA}$).
3. This is static $d v / d t$. See Figure 7 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

TYPICAL CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

Figure 1. On-State Characteristics

Figure 2. Inhibit Voltage versus Temperature

Figure 3. Leakage with LED Off versus Temperature

Figure 5. Trigger Current versus Temperature

Figure 4. IDRM2, Leakage in Inhibit State versus Temperature

Figure 6. LED Current Required to Trigger versus LED Pulse Width

1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
2. 100x scope probes are used, to allow high speeds and voltages.
3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable RTEST allows the $\mathrm{dv} / \mathrm{dt}$ to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. $\tau_{R C}$ is measured at this point and recorded.

Figure 7. Static dv/dt Test Circuit

Typical circuit for use when hot line switching is required． In this circuit the＂hot＂side of the line is switched and the load connected to the cold or neutral side．The load may be connected to either the neutral or hot line．
R_{in} is calculated so that I_{F} is equal to the rated $\mathrm{IFT}_{\mathrm{FT}}$ of the part， 15 mA for the MOC3061， 10 mA for the MOC3062， and 5 mA for the MOC3063．The 39 ohm resistor and 0.01 $\mu \mathrm{F}$ capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load used．

Figure 8．Hot－Line Switching Application Circuit

Figure 9．Inverse－Parallel SCR Driver Circuit

PACKAGE DIMENSIONS

NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：INCH
3．DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL．

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.320	0.350	8.13	8.89	
B	0.240	0.260	6.10	6.60	
C	0.115	0.200	2.93	5.08	
D	0.016	0.020	0.41	0.50	
E	0.040	0.070	1.02	1.77	
F	0.010	0.014	0.25	0.36	
G	0.100		BSC	2.54 BSC	
J	0.008	0.012	0.21		
K	0.100	0.150	0.30		
L	0.300	BSC	7.62		
BSC					
M	0		0	15°	
N	0.015	0.100	0.0	15°	

STYLE 6：
PIN 1．ANODE
2．CATHODE
3．NC
4．MAIN TERMINAL
5．SUBSTRATE
6．MAIN TERMINAL
THRU HOLE

NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：INCH．

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.320	0.350	8.13	8.89		
B	0.240	0.260	6.10	6.60		
C	0.115	0.200	2.93	5.08		
D	0.016	0.020	0.41	0.50		
E	0.040	0.070	1.02	1.77		
F	0.010	0.014	0.25			
G	0.100		BSC	2.54		BSC
H	0.020	0.025	0.51			
J	0.008	0.012	0.63			
K	0.006	0.035	0.16			
L	0.320		BSC	8.13		0.88
S	0.332	0.390	8.43			

SURFACE MOUNT

NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
CONTROLLING DIMENSION：INCH．
．DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL．

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	0.320	0.350	8.13	8.89		
B	0.240	0.260	6.10	6.60		
C	0.115	0.200	2.93	5.08		
D	0.016	0.020	0.41	0.50		
E	0.040	0.070	1.02	1.77		
F	0.010		0.014	0.25		0.36
G	0.100		BSC	2.54 BSC		
J	0.008	0.012	0.21	0.30		
K	0.100	0.150	2.54	3.81		
L	0.400	0.425	10.16	10.80		
N	0.015	0.040	0.38	1.02		

0．4＂LEAD SPACING

SEMICロNロபСTロR＂

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN； NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS．

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body， or（b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Triac \& SCR Output Optocouplers category:
Click to view products by Lite-On manufacturer:
Other Similar products are found below :
MOC3063S-TA ILD207-X001T ILD615-1X007T VO2223-X001 VO4254H WPPCT-N1066A WPPCT-N1566A WPPCT-Z546D 523170E VO2223A-X007T WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D FODM3053V_NF098 TLP3042SCF VO4258D VO4256D VO4156D-X007T VO4158H-X017T MOC3071SM MOC3063STA1-V IL4116X007 MOC3072SM VO0601-X001T OR-M3052 MOC3020XSM MOC3021X MOC3021XSM MOC3022X MOC3023SR2M MOC3041SM MOC3042XSM MOC3043SR2M MOC3043X MOC3043XSM MOC3052SM MOC3063X MOC3081X MOC3081XSM IS620XSM IS623X VO3062-X007T VO3063-X006 PC3SG21YIZ MOC3020 MOC3020X MOC3022

