(20) 0805L UL Series ${ }^{\text {c }} \boldsymbol{\chi} \mathbf{\Lambda}_{\text {us }}$ 产

Device Specification

ELECTRICAL CHARACTERISTICS

Part Number	Marking	$\mathrm{I}_{\text {hold }}$ (A)	$\mathrm{I}_{\text {trip }}$ (A)	$\begin{aligned} & \mathbf{V}_{\text {max }} \\ & (\mathrm{Vdc}) \end{aligned}$	$I_{\text {max }}$ (A)	$\mathrm{Pd}_{\text {Typ }}$ (W)	Maximum Time-to-Trip		Resistance	
							Current (A)	Time (Sec.)	$\mathbf{R}_{\text {min }}$ (Ω)	$\mathbf{R}_{1 \text { max }}$ (Ω)
0805L075UL	-G	0.75	1.50	6	50	0.6	8.0	0.3	0.050	0.15
0805L110UL	-H	1.10	1.80	6	50	0.6	8.0	0.3	0.040	0.120
0805L150UL	-K	1.50	3.00	6	50	0.6	8.0	0.5	0.024	0.085
0805L175UL	-V	1.75	3.50	6	50	0.6	8.0	0.6	0.018	0.063
0805L200ULTH	-L	2.00	4.00	6	50	0.6	8.0	1.0	0.014	0.049
0805L260ULTH	-S	2.60	5.20	6	50	0.6	8.0	4.0	0.010	0.035

Note: $\mathrm{I}_{\text {hold }}=$ Hold current: maximum current device will pass without tripping in $20^{\circ} \mathrm{C}$ still air.
$\mathrm{I}_{\text {trip }} \quad=$ Trip Current: minimum current at which the device will trip in $20^{\circ} \mathrm{C}$ still air.
$\mathrm{V}_{\max } \quad=$ Maximum voltage device can withstand without damage at rated current (Imax)
$\mathrm{I}_{\max } \quad=$ Maximum fault current device can withstand without damage at rated voltage (Vmax)
$\mathrm{Pd} \quad=$ Power dissipated from device when in the tripped state at $20^{\circ} \mathrm{C}$ still air.
$\mathrm{R}_{\text {min }} \quad=$ Minimum resistance of device in initial (un-soldered) state.
$\mathrm{R}_{1 \max }=$ Maximum resistance of device at $20^{\circ} \mathrm{C}$ measured one hour after tripping or reflow soldering of $260^{\circ} \mathrm{C}$ for 20 sec.
Caution
:Operation beyond the specified rating may result in damage and possible arcing and flame.

Figure

Solder Pad Layout (mm)

PHYSICAL DIMENSIONS (mm)

Part Number	A		B		C		D		E	
	Min.	Max.								
0805LxxxUL	2.00	2.20	1.20	1.50	0.40	0.75	0.20	0.55	0.05	0.45

Note: $x \times x$ represents hold current rating ($075,110,150,175,200$ and 260$)$.

POLYFUSE ${ }^{\circledR}$ Resettable PTCs

Temperature Rerating

	Ambient Operation Temperature												
	$-40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$				
Part Number													
0805L075UL	1.15	1.0	0.85	0.75	0.55	0.45	0.40	0.30	0.20				
0805L110UL	1.7	1.5	1.3	1.1	0.85	0.7	0.6	0.5	0.3				
0805L150UL	2.25	2	1.75	1.5	1.15	1	0.85	0.65	0.45				
0805L175UL	2.6	2.3	2	1.75	1.3	1.15	0.95	0.75	0.5				
0805L200UL	3.1	2.75	2.4	2	1.65	1.4	1.15	0.95	0.65				
0805L260UL	3.8	3.3	2.9	2.6	2.2	1.95	1.75	1.5	1.05				

Average Time Current Curves

Temperature Rerating Curve

Note: The average time current curves and Temperature Rerating curve performance is affected
By a number of variables, and these curves provide as guidance only. Customer must verify the performance in their application.

Soldering Parameters

Condition	Reflow
PeakTemp/ DurationTime	$260^{\circ} \mathrm{C} / 10 \mathrm{Sec}$
Time above liquids (TAL) $220^{\circ} \mathrm{C}$	$60 \mathrm{Sec} \sim 100 \mathrm{Sec}$
Preheat $120^{\circ} \mathrm{C} \sim 180^{\circ} \mathrm{C}$	$50 \mathrm{Sec} \sim 150 \mathrm{SeC}$
Storage Condition	$0^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}, \leqq 70 \% \mathrm{RH}$

- Recommended reflow methods: IR, vapor phase oven, hot air oven, N_{2} environment for lead-free
- Recommended maximum paste thickness is 0.25 mm (0.010 inch)
- Devices can be cleaned using standard industry methods and solvents.
Note: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

Physical Specifications

Terminal Material	Solder-Plated Copper (Solder Material: Matte Tin (Sn))
Lead Solderability	Meets EIA Specification RS186-9E, ANSI/J-STD-002, Category 3

Environmental Specifications

Operating/Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Maximum Device Surface Temperature in Tripped State	$125^{\circ} \mathrm{C}$			
Passive Aging	$+85^{\circ} \mathrm{C}, 1000$ hours $-1+5 \%$ typical resistance change			
Humidity Aging	$+85^{\circ} \mathrm{C}, 85 \%$, R.H., 1000 hours $-1+5 \%$ typical resistance change			
Thermal Shock	MIL-STD-202, Method 107G $+85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C} 20$ -30% times			
Solvpical resistance change		$	$	MIL-STD-202, Method 215
:---				
No change	,	MIL-STD-883C, Method 2007.1,		
:---				
Condition A				
No change	,			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resettable Fuses - PPTC category:
Click to view products by Littelfuse manufacturer:
Other Similar products are found below :
0001.1010.G D38999/20WG39JN F02B250V1-4AS 9728214S-2(621) RF0627-000 RF2534-000 ASMD185-2 EN2997S61212AN

EN2997SE61203AN BK-ABC-V-5-R LR4-550RAF SMD125-2 F60C500V20AS RF0078-000 RF1548-000 RF1973-000 RF2171-000 RF2531-000 RF2533-000 RF2550-000 TR600-150Q-B-0.5-0.130 BK-AGX-20 5E4795/04-1502 EN2997S61212MN EN2997SE61203MN EN2997SE61212AN EN2997SE61212MN BK1/S505-1.25-R TR-3216FF20-R TRF250-080T-B-1.0-0.125 JT06RT1832BN014 S-3-2-10 SMD100-2 FRN-R-5-6-10 FRS-R-3-2-10 LP-CC-2-1-2 LPS-RK-3-2-10SP BK-AGC-1-8-R BK-AGC-2-10-R BK-AGC-7-1-2 BK-GDC500MA BK-MDL-1-6-10-R BK-SFE-4 BK-ABC-1-R BK-C518-250-R BK-GDB-2A BK-MDL-1-8-R BK-MDL-6 BK-AGC-5-R BK-ATC$\underline{2}$

