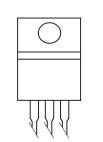


Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G

BTB16-600CW3G, BTB16-800CW3G


Description

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 V
- On-State Current Rating of 16 Amperes RMS at 25°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 1000 V/ μ s minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt 8.5 A/ms minimum at 125°C
- These are Pb-Free Devices

Functional Diagram

Additional Information

Resources

Po

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 08/30/17

Pin Out

Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G

Maximum Ratings ($T_{J} = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T _J = -40° to 125°C) BTB16–600CW3G BTB16–800CW3G	V _{drm} , V _{rrm}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 80^{\circ}$ C)	I _{T (RMS)}	16	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)	I _{TSM}	170	A
Circuit Fusing Consideration (t = 8.3 ms)	l²t	144	A ² sec
Non-Repetitive Surge Peak Off-State Voltage $(T_j = 25^{\circ}C, t = 10 \text{ ms})$	V _{dsm} /V _{rsm}	V _{DSM} /V _{RSM} +100	V
Peak Gate Current ($T_J = 125^{\circ}C$, t = 20ms)	I _{GM}	4.0	W
Peak Gate Power (Pulse Width \leq 1.0 $\mu s, T_{_C}$ = 80°C)	P _{GM}	20	W
Average Gate Power ($T_J = 125^{\circ}C$)	P _{G(AV)}	1.0	W
Operating Junction Temperature Range	T,	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC)	R _{sjc}	1.9	°C/W
	Junction-to-Ambient	R _{8JA}	60	0,00
Maximum Lead Temperature for So 10 seconds	dering Purposes, 1/8" from case for	TL	260	°C

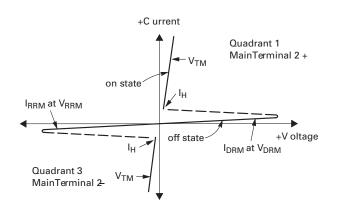
Electrical Characteristics • OFF (T₁ = 25°C unless otherwise noted ; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_{J} = 25^{\circ}C$	I _{DRM} ,	-	-	0.005	
$(V_{D} = V_{DRM} = V_{RRM}; \text{ Gate Open})$	$T_{J} = 110^{\circ}C$	I RRM	-	-	2.0	mA

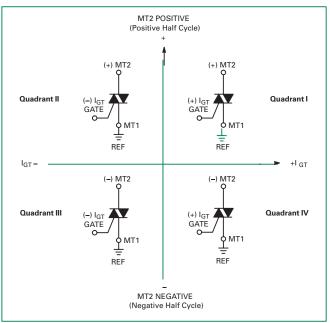
Electrical Characteristics - **ON** ($T_{J} = 25^{\circ}$ C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A Peak}$)		V _{TM}	-	_	1.55	V
Gate Trigger Current (Continuous dc) (V $_{\rm D}$ = 12 V, R $_{\rm L}$ = 33 Ω)	MT2(+), G(+)		2.0	_	35	
	MT2(+), G(-)	I _{GT}	2.0	-	35	mA
	MT2(-), G(-)		2.0	-	35	
Holding Current (V _D = 12 V, Gate Open, Initiating Current = ±500 mA)		I _H	_	_	50	mA
	MT2(+), G(+)		-	_	60	
Latching Current (V_{_{D}} = 12 V, I_{_{G}} = = 1.2 \times I_{_{GT}})	MT2(+), G(-)	I.	_	_	65	mA
	MT2(-), G(-)		-	_	60	
	MT2(+), G(+)		0.5	_	1.7	
Gate Trigger Voltage (V $_{\rm D}$ = 12 V, R $_{\rm L}$ = 33 $\Omega)$	MT2(+), G(-)	V _{gt}	0.5	_	1.1	V
	MT2(-), G(-)		0.5	-	1.1	
	MT2(+), G(+)		0.2	-	-	
Gate Non-Trigger Voltage ($T_J = 125^{\circ}C$)	MT2(+), G(-)	V _{gd}	0.2	-	-	V
	MT2(–), G(–)		0.2	-	-	

2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

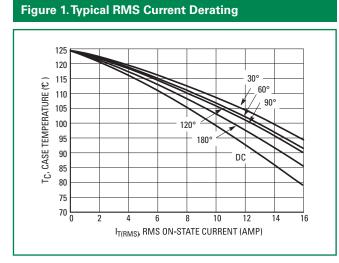


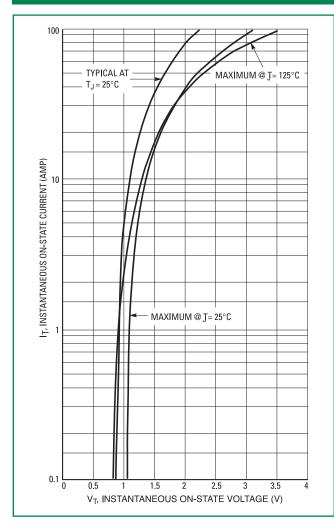
Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G

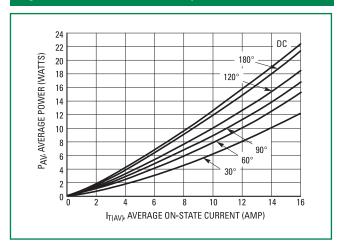

Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, T _J = 125°C, No Snubber)	(dl/dt)c	8.5	-	_	A/ms
Critical Rate of Rise of On–State Current (T_J = 125°C, f = 120 Hz, I_G = 2 x I_{GT} , tr ≤ 100 ns)	dl/dt	-	-	50	A/µs
Critical Rate of Rise of Off-State Voltage ($V_{D} = 0.66 \times V_{DRM}$, Exponential Waveform, Gate Open, $T_{J} = 125^{\circ}$ C)	dV/dt	1000	-	_	V/µs

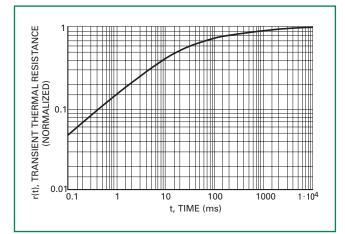
Voltage Current Characteristic of SCR

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current


Quadrant Definitions for a Triac


All polarities are referenced to MT1. With in-phase signals (using standard AC lines) quadrants I and III are used.


Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G


Figure 3. On–State Characteristics

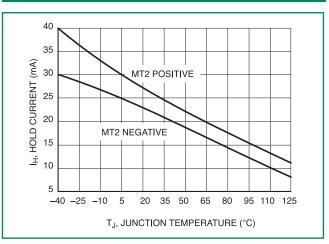

Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

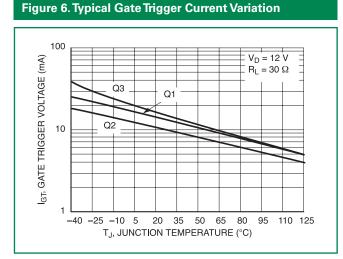
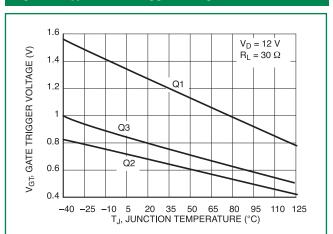
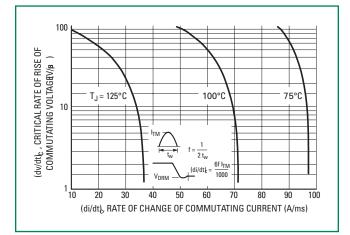


Figure 5. Typical Hold Current Variation


Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

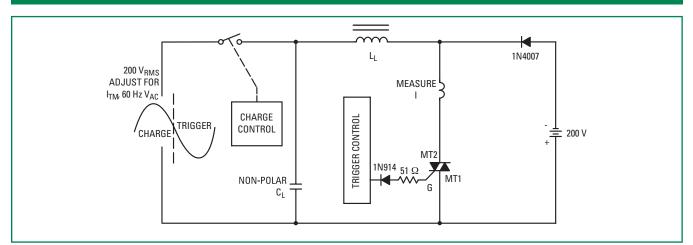
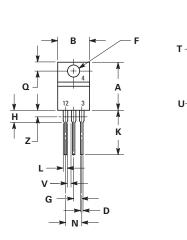

Figure 7. Typical Gate Trigger Voltage Variation

Figure 9. Critical Rate of Rise of CommutatingVoltage

Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

-T- SEATING PLANE


S

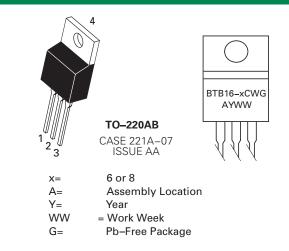
R

1

Surface Mount - 800V > BTB16-600BW3G, BTB16-800BW3G

Dimensions

	Incl	Inches Mill		neters
Dim	Min	Max	Min	Max
А	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <u>www.littlefuse.com/disclaimer-electronics</u>

Part Marking System

Pin Assignment	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Ordering Information

Device	Package	Shipping
BTB16-600CW3G	TO-220AB (Pb-Free)	50 Units / Rail
BTB16-800CW3G	TO-220AB (Pb-Free)	50 Units / Rail

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 T1235T-8I
 BTA312-600CT.127
 T1210T

 8G-TR
 Z0109NN0,135
 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115

 BT258-500R,127
 BTA08-800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G

 BTB16-600CW3G
 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG

 ACST1235-8FP
 ACS302-6T3-TR
 BT134-600D,127
 BT134-600G,127
 BT136X-600E,127