
# Littelfuse® Expertise Applied | Answers Delivered

Kxxx1GL Series RoHS



#### **Schematic Symbol**



#### **Applications**

Typical application circuit presented in Figure 10 of this data sheet (Typical Metal Halide Ignitor Circuit).

#### **Description**

The Multipulse<sup>™</sup> SIDAC is a voltage switch used in Metal-Halide lamp ignition circuits, as well as High Pressure Sodium lamp ignition circuits for outdoor street and area lighting. This robust solid-state switch is designed to handle lamp igniter applications requiring operation at ambient temperatures up to 90°C where igniter circuit components can raise SIDAC junction temperature up to 125°C, especially when the lamp element is removed or ruptured. Its excellent commutation time ( $t_{\text{COMM}}$ ) makes this robust product best suited for producing multiple pulses in each half cycle of 50/60 Hz line voltage. The Multipulse<sup>™</sup> SIDAC is offered in a DO-15 axial leaded package.

Kxxx1GL SIDAC has a repetitive off-state blocking voltage  $(V_{DRM})$  of 180V to 270V minimum depending actual device type. Blocking capability is ensured by glass passivated junctions for best reliability. The package is epoxy encapsulated with tin plated copper alloy leads.

#### **Features**

- AC circuit oriented
- Triggering Voltage of 200 to 380V
- RoHS Compliant

#### **Electrical Specifications**

| Symbol              | Parameters                                                          | Test Conditions                                      | Min                      | Max                      | Unit   |
|---------------------|---------------------------------------------------------------------|------------------------------------------------------|--------------------------|--------------------------|--------|
| V <sub>T</sub>      | On-state Voltage                                                    | IT=1A                                                |                          | 3                        | V      |
| I <sub>TRM</sub>    | Peak Non-Repetitive Surge Current                                   | TA=25 °C<br>Pulse Wave = 10µs,<br>Sine Wave, f=120Hz |                          | 50                       | А      |
| V <sub>BO</sub>     | Breakover/Trigger Voltage                                           | K2201GL<br>K2401GL<br>K2501GL<br>K3601GL             | 200<br>220<br>240<br>348 | 230<br>250<br>265<br>380 | V      |
| $V_{DRM}$           | Repetitive Peak Off-State Voltage                                   | K2201GL<br>K2401GL<br>K2501GL<br>K3601GL             | 180<br>190<br>200<br>270 |                          | V      |
| I <sub>T(RMS)</sub> | On-State RMS Current, T <sub>J</sub> < 125°C                        | 50/60Hz<br>Sine Wave                                 |                          | 1                        | А      |
| I <sub>H</sub>      | Dynamic Holding Current, R=100 $\Omega$                             | 50/60Hz<br>Sine Wave                                 |                          | 30 TYP                   | mA     |
| R <sub>s</sub>      | Switching Resistance, $R_s = \frac{(V_{BO} - V_s)}{(I_s - I_{BO})}$ | 50/60Hz<br>Sine Wave                                 | 100                      |                          | Ω      |
| t <sub>COMM</sub>   | Commutation Time T <sub>J</sub> < 125°C                             | See test circuit and waveform in Figure 9            |                          | 100                      | μsec   |
| I <sub>BO</sub>     | Breakover Current                                                   | 50/60Hz<br>Sine Wave                                 |                          | 10                       | uA     |
| I <sub>TSM</sub>    | Non-repetitive 1 cycle On-State peak value                          | 60Hz<br>50Hz                                         |                          | 20.0<br>16.7             | А      |
| di/dt               | Critical Rate of Rise of On-State Current                           |                                                      |                          | 150                      | A/µsec |
| dv/dt               | Critical Rate of Rise of Off-State Voltage                          |                                                      |                          | 1500                     | V/µsec |
| T <sub>s</sub>      | Storage Temperature Range                                           |                                                      | -40                      | +125                     | °C     |



Figure 1: Characteristics

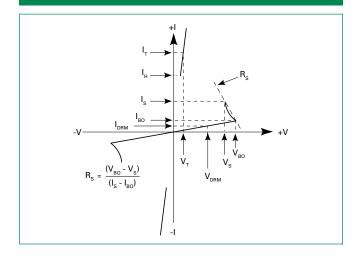



Figure 3: Power Dissipation (Typical) vs. On-State Current

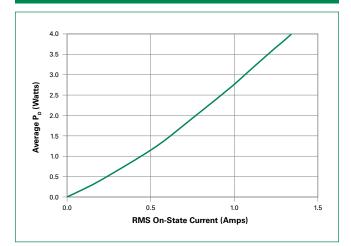



Figure 5: Pulse On-State Current Rating

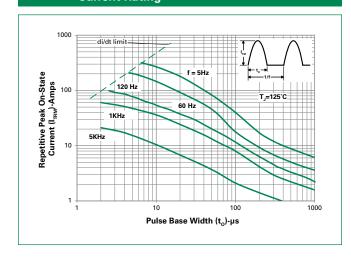



Figure 2: Maximum Allowable Lead/Tab Temperature vs. On-State Current

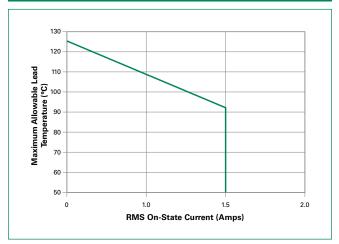



Figure 4: V<sub>BO</sub> Change vs. Junction Temperature

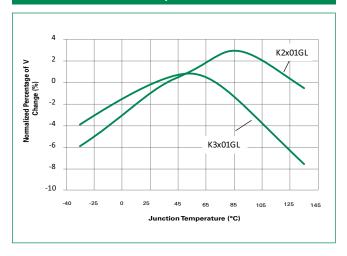



Figure 6: Maximum Allowable Ambient Temperature vs. On-State Current

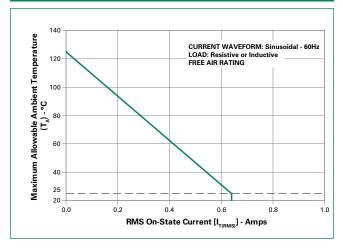
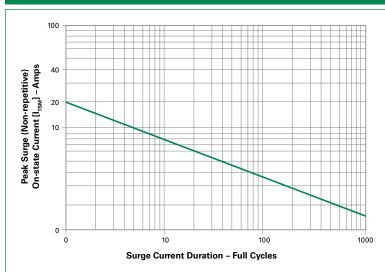






Figure 7: Peak Surge Current vs Surge Current Duration



SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive

RMS On-State Current:  ${\rm I_T}$  Maximum Rated Value at Specified Junction Temperature

#### Notes

- Blocking capability may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Figure 8: Typical On-State Voltage vs On-State Current

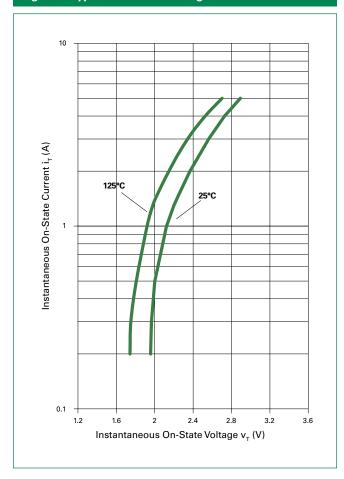
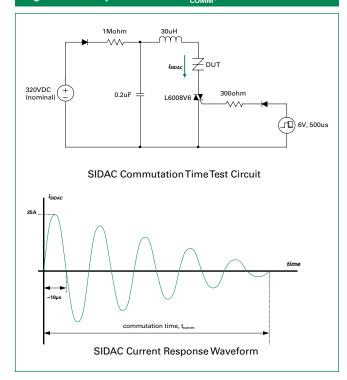



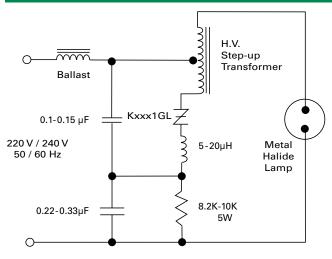

Figure 9: Multipulse™ SIDAC t<sub>COMM</sub>, Commutation Time



# **Additional Information**



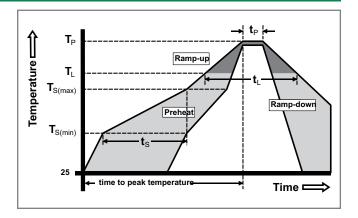





Datasheet R

Samples




# Figure 10: Typical Metal Halide Ignitor Circuit



Note: With proper component selection, this circuit will produce three pulses for ignition of metal halide lamp that requires a minimum of three pulses at 5kV magnitude and >1uSec duration each at a minimum repetition rate of 3.3kHz.

# **Soldering Parameters**

| Reflow Condition                                                |                                           | Pb – Free assembly      |  |
|-----------------------------------------------------------------|-------------------------------------------|-------------------------|--|
| Pre Heat                                                        | -Temperature Min (T <sub>s(min)</sub> )   | 150°C                   |  |
|                                                                 | -Temperature Max (T <sub>s(max)</sub> )   | 200°C                   |  |
|                                                                 | -Time (min to max) (t <sub>s</sub> )      | 60 – 180 secs           |  |
| Average ramp up rate (Liquidus Temp) $(T_L)$ to peak            |                                           | 5°C/second max          |  |
| T <sub>S(max)</sub> to T <sub>L</sub> - Ramp-up Rate            |                                           | 5°C/second max          |  |
|                                                                 | -Temperature (T <sub>L</sub> ) (Liquidus) | 217°C                   |  |
| Reflow                                                          | -Temperature (t <sub>L</sub> )            | 60 – 150 seconds        |  |
| PeakTemperature (T <sub>p</sub> )                               |                                           | 260 <sup>+0/-5</sup> °C |  |
| Time within 5°C of actual peak<br>Temperature (t <sub>p</sub> ) |                                           | 20 – 40 seconds         |  |
| Ramp-down Rate                                                  |                                           | 5°C/second max          |  |
| Time 25°C to peakTemperature (T <sub>P</sub> )                  |                                           | 8 minutes Max.          |  |
| Do not exceed                                                   |                                           | 280°C                   |  |
|                                                                 |                                           |                         |  |

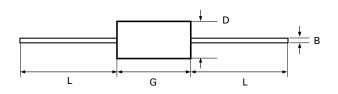




# **Physical Specifications**

| Terminal Finish | 100% Matte Tin Plated                                         |
|-----------------|---------------------------------------------------------------|
| Body Material   | UL recognized epoxy meeting flammability classification 94V-0 |
| Lead Material   | Copper Alloy                                                  |

| Package | Weight / unit (mg) |  |  |
|---------|--------------------|--|--|
| DO-15   | 385                |  |  |


# **Design Considerations**

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Overheating and surge currents are the main killers of SIDACs. Correct mounting, soldering, and forming of the leads also help protect against component damage.

# Reliability/Environmental Tests

| Test                                                     | Specifications and Conditions                                                                                                                       |  |  |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| High Temperature<br>Voltage Blocking                     | MIL-STD-750: Method 1040, Condition<br>A Rated V <sub>DRM</sub> (VAC-peak), 125°C, 1008<br>hours                                                    |  |  |
| Temperature Cycling                                      | MIL-STD-750: Method 1051, 100 cycles; -40°C to 150°C, 15-minute dwell time                                                                          |  |  |
| Temperature /<br>Humidity                                | EIA/JEDEC: JESD22-A101<br>1008 hours; 160V - DC: 85°C;<br>85% relative humidity                                                                     |  |  |
| High Temp Storage                                        | MIL-STD-750: Method 1031<br>150°C, 1008 hours                                                                                                       |  |  |
| Low-Temp Storage                                         | -40°C, 1008 hours                                                                                                                                   |  |  |
| Thermal Shock                                            | MIL-STD-750: Method 1056<br>10 cycles; 0°C to 100°C; 5-minute dwell-<br>time at each temperature; 10-sec (max)<br>transfer time between temperature |  |  |
| Autoclave                                                | EIA/JEDEC: JESD22-A102<br>168 hours (121°C at 2 ATMs) and<br>100% RH                                                                                |  |  |
| Resistance to MIL-STD-750: Method 2031 260°C, 10 seconds |                                                                                                                                                     |  |  |
| Solderability                                            | ANSI/J-STD-002: Category 3, Test A                                                                                                                  |  |  |
| Repetitive Surge<br>Life Testing                         | Multi firings per half cycle at 60Hz in application circuit for 168 hours minimum                                                                   |  |  |

# **Dimensions — DO-15 (G Package)**

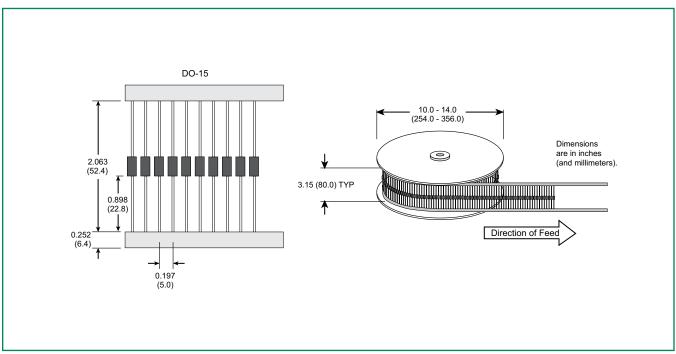


| Dimension   | Inches |       | Millimeters |       |
|-------------|--------|-------|-------------|-------|
| Difficusion | Max    | Max   | Min         | Max   |
| В           | 0.028  | 0.034 | 0.711       | 0.864 |
| D           | 0.120  | 0.140 | 3.048       | 3.556 |
| G           | 0.235  | 0.270 | 5.969       | 6.858 |
| L           | 1.000  |       | 25.400      |       |

#### **Product Selector**

| Part Number   | Switching Voltage Range |                         | Blocking Voltage | Packages |  |
|---------------|-------------------------|-------------------------|------------------|----------|--|
| rait Nuilibei | V <sub>BO</sub> Minimum | V <sub>BO</sub> Maximum | $V_{DRM}$        | rackayes |  |
| K2201GL       | 200V                    | 230V                    | 180V             | DO-15    |  |
| K2401GL       | 220V                    | 250V                    | 190V             | DO-15    |  |
| K2501GL       | 240V                    | 265V                    | 200V             | DO-15    |  |
| K3601GL       | 340V                    | 380V                    | 270V             | DO-15    |  |

# **Teccor® brand Thyristors** Standard Unidirectional SIDACs


# **Packing Options**

| Part Number | Package | Packing Mode | Base Quantity |
|-------------|---------|--------------|---------------|
| Kxxx1GL     | DO-15   | Bulk         | 1000          |
| Kxxx1GLRP   | DO-15   | Tape & Reel  | 5000          |

Note: xxx = voltage

#### **DO-15 Embossed Carrier RP Specifications**

#### Meets all EIA RS-29-6 Standards



# **Part Numbering System**

#### K 220 1 G L RP **SERIES** K: Sidac VOLTAGE PACKAGING OPTIONS 220: 200 to 230V Blank: Bulk 240: 220 to 250V 250: 240 to 265V RP: Tape and Reel 360: 340 to 380V INCREASED H.V. CIRCUIT FUNCTION **GENERATION CAPABILITY** 1: Multipulse" **DEVICE PACKAGE** G: DO-15

# **Part Marking System**



# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Sidacs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below:

IXBOD1-16RD K1V24-4060 G1VL22C-5103 G1VL24C-5103 IXBOD1-06 IXBOD1-18RD IXBOD1-20RD IXBOD1-36R IXBOD2-56R K1500S1URP K1050S1URP K2000S1URP K1050E70 K1050SRP K1100E70 K1200E70 K1500GURP K1300GRP K1500G K1500SRP K2000GRP K2000GRP K2000GRP K2200GRP K2400E70 K2400EH70 K2400G K2401G K2500E70 K2500G K2500SRP K3002G MKP3V240G G1V(B)20C-7000 G1V(B)22C-7000 K1V12-7060 K1V14-7000 K1V36(W)-7000 K1VZL09-5103 KL3L07-5103 KL3N14-5103 KL3R20-5103 KL3Z18-5103 K2400EH70RP2