

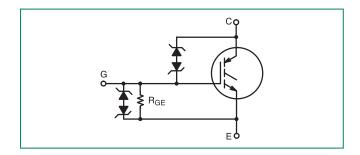
NGD18N40ACLB - 18 A, 400 V, N-Channel Ignition IGBT, DPAK

18 Amps, 400 Volts VCE(on) ≤ 2.0 V @ IC = 10 A, VGE ≥ 4.5 V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	430	V _{DC}
Collector-Gate Voltage	V _{CER}	430	V _{DC}
Gate-Emitter Voltage	V _{GE}	18	V _{DC}
Collector Current–Continuous		15	A _{DC}
@TC = 25°C - Pulsed	l _c	50	A _{AC}
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	800	V
Total Power Dissipation @TC = 25°C	PD	115	W
Derate above 25°C	FD	0.77	W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Features

- Ideal for Coil-on-Plug Applications
- DPAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate-Collector Voltage Clamp Limits Stress Applied to Load
- Integrated ESD Diode Protection
- New Design Increases Unclamped Inductive Switching (UIS) Energy Per Area
- Low Threshold Voltage Interfaces Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- Optional Gate Resistor (R $_{\rm G}$) and Gate–Emitter Resistor (R $_{\rm GE}$)
- Emitter Ballasting for Short-Circuit Capability
- These are Pb-Free Devices

Functional Diagram

Additional Information

Resources

Samples

Unclamped Collector-To-Emitter Avalanche Characteristics (-55°≤T_J≤150°C)

Rating	Symbol	Value	Unit		
Single Pulse Collector-to-Emitter Avalanche Energy					
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 21.1 \text{ A}, L = 1.8 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$		400			
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 16.2 \text{ A}, L = 3.0 \text{ mH}, \text{ Starting T}_J = 25^{\circ}\text{C}$	E _{AS}	400	mJ		
$V_{CC} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, P_k I_L = 18.3 \text{ A}, L = 1.8 \text{ mH}, Starting T_J = 125 ^{\circ}\text{C}$		300			
Reverse Avalanche Energy					
$V_{CC} = 100 \text{ V}, V_{GE} = 20 \text{ V}, P_k I_L = 25.8 \text{ A}, L = 6.0 \text{ mH}, Starting T_J = 25^{\circ}\text{C}$	E _{AS(R)}	2000	mJ		

Maximum Short-Circuit Times $(-55^{\circ} \le T_{J} \le 150^{\circ}C)$

Rating	Symbol	Value	Unit
Short Circuit Withstand Time 1 (See Figure 17, 3 Pulses with 10 ms Period)	t _{sc1}	750	μs
Short Circuit Withstand Time 2 (See Figure 18, 3 Pulses with 10 ms Period)	t _{sc2}	5.0	ms

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{euc}	1.3	°C/W
Thermal Resistance, Junction to Ambient DPAK (Note 1)	R _{eJA}	95	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T _L	275	°C

Electrical Characteristics - OFF

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit					
Collector Froitter Claren Voltage	D) /	$I_{c} = 2.0 \text{ mA}$	$T_{J} = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	380	395	420	V					
Collector–Emitter Clamp Voltage	BV _{CES}	$I_c = 10 \text{ mA}$	$T_{J} = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	390	405	430	V _{DC}					
			T _J = 25°C	_	2.0	20						
Zero Gate Voltage Collector Current		$V_{CE} = 350$ V, $V_{GE} = 0$ V	T _J = 150°C	_	10	40*						
Zero date voltage Collector Current	CES		T _J = -40°C	_	1.0	10	μΑ _{DC}					
		$V_{CE} = 15 \text{ V},$ $V_{GE} = 0 \text{ V}$	T _J = 25°C	-	-	2.0						
			T _J = 25°C	_	0.7	1.0						
Reverse Collector–Emitter Leakage Current	I _{ECS}	I _{ECS}	I _{ECS}	I _{ECS}	I _{ECS}	I _{ECS}	$V_{CE} = -24 \text{ V}$	T _J = 150°C	-	12	25*	mA
			T _J = -40°C	-	0.1	1.0						
			T _J = 25°C	27	33	37						
Reverse Collector–Emitter Clamp Voltage	B _{VCES(R)}	$I_c = -75 \text{ mA}$	T _J = 150°C	30	36	40	V _{DC}					
			T _J = -40°C	25	32	35						
Gate-Emitter Clamp Voltage	BV _{GES}	I _G = 5.0 mA	$T_{J} = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	11	13	15	V _{DC}					
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = 10 V	$T_{J} = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	384	640	700	μA _{DC}					
Gate Emitter Resistor	R _{GE}	-	$T_{J} = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	10	16	26	kΩ					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

^{*}Maximum Value of Characteristic across Temperature Range.

Electrical Characteristics - ON (Note 2)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit				
		$I_{c} = 1.0 \text{ mA},$	T _J = 25°C	1.1	1.4	1.9					
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$	T _J = 150°C	0.75	1.0	1.4	V _{DC}				
		V _{GE} - V _{CE}	T _J = -40°C	1.2	1.6	2.1*					
Threshold Temperature Coefficient (Negative)	_	_	_	-	3.4	-	mV/°C				
			T _J = 25°C	1.0	1.4	1.6					
		$I_{c} = 6.0 \text{ A},$ $V_{ge} = 4.0 \text{ V}$	T _J = 150°C	0.9	1.3	1.6					
		V _{GE} = 4.0 V	T _J = -40°C	1.1	1.45	1.7*					
			T _J = 25°C	1.3	1.6	1.9*					
			$I_{\rm C} = 8.0 \text{A},$ $V_{\rm GE} = 4.0 \text{V}$	T _J = 150°C	1.2	1.55	1.8				
				T _J = -40°C	1.4	1.6	1.9*				
			T _J = 25°C	1.4	1.8	2.05					
	$V_{CE(on)}$ $V_{ge} = 4$	$V_{CE(on)}$ $I_c =$	V _{CE(on)}	$I_{c} = 10 \text{ A},$	_	T _J = 150°C	1.4	1.8	2.0		
Collector-to-Emitter On-Voltage				V _{CE(on)}	$V_{CE(on)}$ $V_{GE} = 4.0 \text{ V}$	V _{GE} = 4.0 V	T _J = -40°C	1.4	1.8	2.1*	V _{DC}
				l = 15 Λ	T _J = 25°C	1.8	2.2	2.5	DC		
				$I_{c} = 15 \text{ A},$ $V_{ge} = 4.0 \text{ V}$	T _J = 150°C	2.0	2.4	2.6*			
		GE TIO	$T_{J} = -40^{\circ}C$	1.7	2.1	2.5					
			T _J = 25°C	1.3	1.8	2.0*					
		$I_{c} = 10 \text{ A},$ $V_{GE} = 4.5 \text{ V}$	T _J = 150°C	1.3	1.75	2.0*					
			T _J = -40°C	1.4	1.8	2.0*					
		$I_{c} = 6.5 \text{ A},$ $V_{GE} = 3.7 \text{ V}$	T _J = 25°C	_	-	1.65					
Forward Transconductance	gfs	$V_{CE} = 5.0 \text{ V},$ $I_{C} = 6.0 \text{ A}$	T _J = -40°C to 150°C	8.0	14	25	Mhos				

Dynamic Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
Input Capacitance	C _{ISS}	V = 25 V		400	800	1000		
Output Capacitance	C _{oss}	$V_{CC} = 25 \text{ V},$ $V_{GE} = 0 \text{ V}$ $f = 1.0 \text{ MHz}$	$V_{GE} = 0 V$	T _J = −40°C to 150°C	50	75	100	рF
Transfer Capacitance	C _{RSS}			t = 1.0 MHz		4.0	7.0	10

Switiching Characteristics

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn-Off Delay Time (Resistive)	t _{d(off)}	$V_{cc} = 300 \text{ V},$ $I_{c} = 6.5 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega,$ $R_{L} = 46 \Omega,$	T _J = 25°C	-	4.0	10	μS
Fall Time (Resistive)	tf	$V_{cc} = 300 \text{ V},$ $I_{c} = 6.5 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega,$ $R_{L} = 46 \Omega,$	T _J = 25°C	-	9.0	15	μο
Turn-On Delay Time	t _{d(on)}	$V_{cc} = 10 \text{ V},$ $I_{c} = 6.5 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega,$ $R_{L} = 1.5 \Omega,$	T _J = 25°C	-	0.7	4.0	
Rise Time	t,	$V_{cc} = 10 \text{ V},$ $I_{c} = 6.5 \text{ A}$ $R_{g} = 1.0 \text{ k}\Omega,$ $R_{L} = 1.5 \Omega,$	T _J = 25°C	-	4.5	7.0	μS

^{*}Maximum Value of Characteristic across Temperature Range.

Ratings and Characteristic Curves

Figure 1. Output Characteristics

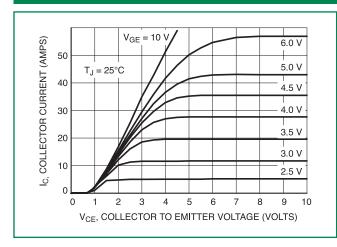
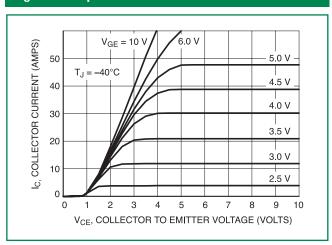



Figure 2. Output Characteristics

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

^{2.} Pulse Test: Pulse Width \leq 300 μ S, Duty Cycle \leq 2%.

Figure 3. Output Characteristics

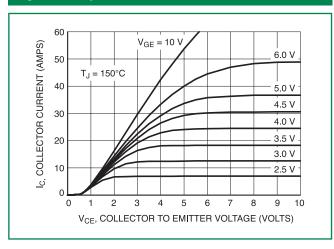


Figure 5. Collector-to-Emitter Saturation Voltage vs Junction Temperature

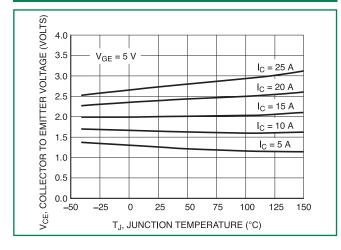
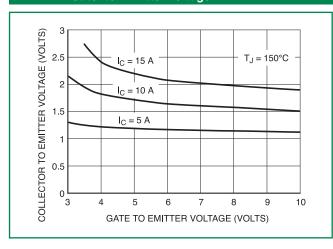



Figure 7. Collector-to-Emitter Voltage vs Gate-to-Emitter Voltage

Figure 4. Transfer Characteristics

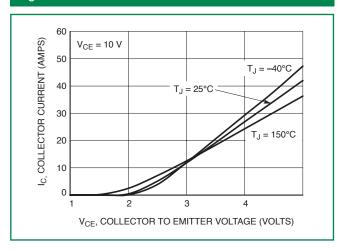


Figure 6. Collector-to-Emitter Voltage versus
Gate-to-Emitter Voltage

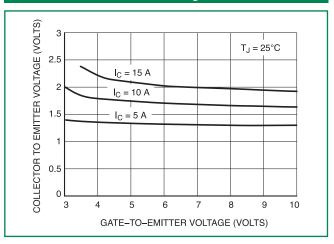


Figure 8. Capacitance Variation

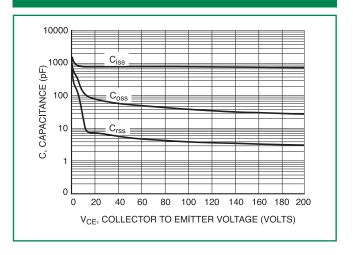


Figure 9. Gate Threshold Voltage vs Temperature

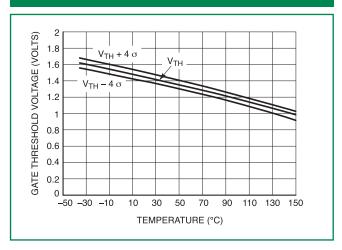


Figure 11. Typical Open Secondary Latch Current vs Temperature

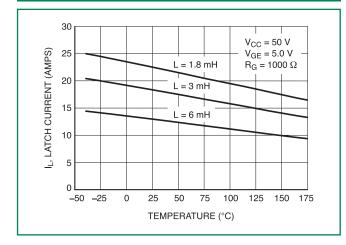


Figure 13. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at $T_a = 25^{\circ}\text{C}$)

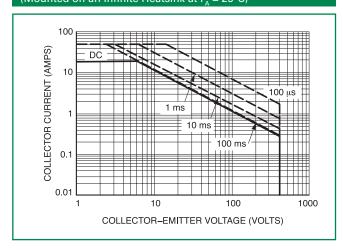


Figure 10. Minimum Open Secondary Latch Current vs Temperature

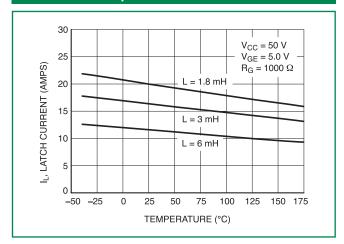


Figure 12. Inductive Switching Fall Time vs Temperature

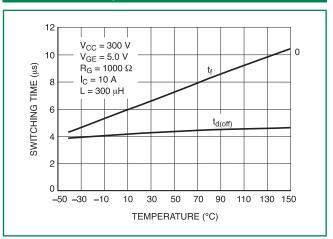


Figure 14. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at T_a = 125°C)

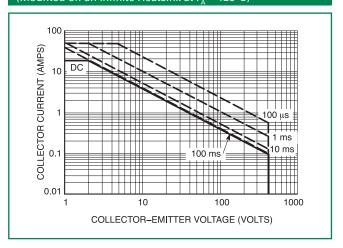


Figure 15. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at $T_c = 25$ °C)

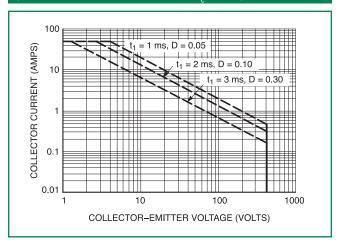


Figure 15. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at $T_c = 125$ °C)

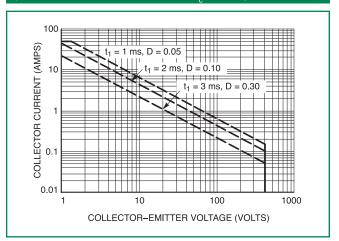


Figure 17. Circuit Configuration for Short Circuit Test #1

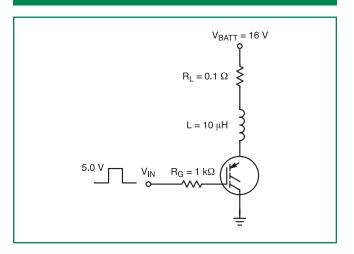
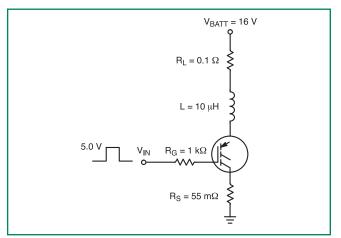
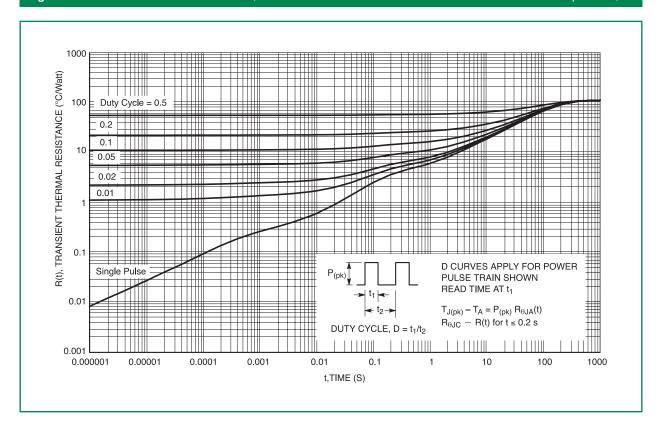


Figure 18. Circuit Configuration for Short Circuit Test #2

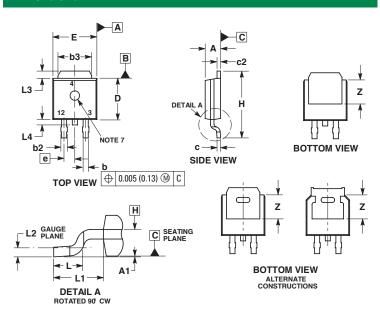
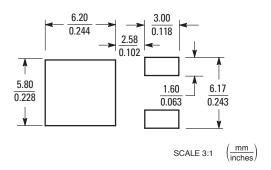
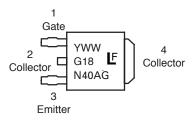


Figure 19. Transient Thermal Resistance (Non-normalized Junction-to-Ambient mounted on minimum pad area)

Dimensions



5 .	Inc	hes	Millin	neters	
Dim	Min	Max	Min	Max	
А	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114	0.114 REF		REF	
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASMEY14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- ${\tt 5.\,DIMENSIONS\,D\,AND\,E\,ARE\,DETERMINED\,ATTHE\,OUTERMOST\,EXTREMES\,OFTHE\,PLASTIC\,BODY.}\\$
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.

Soldering Footrpint

Part Marking System

G18N40x= Device Code

Y = Year WW = Work Week G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping†
NGB18N40ACLBT4G	DPAK (Pb-Free)	2500 / Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 APT50GT60BRG
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30

 GT50JR22(STA1ES)
 TIG058E8-TL-H
 IGW40N120H3FKSA1
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG

 RJH60F3DPQ-A0#T0
 APT40GR120B2SCD10
 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG

 IXA30RG1200DHGLB
 IXA40RG1200DHGLB
 APT70GR65B2DU40
 NTE3320
 QP12W05S-37A
 IHFW40N65R5SXKSA1
 APT70GR120J

 APT35GP120JDQ2
 IKZA40N65RH5XKSA1
 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IMBG120R220M1HXTMA1
 XD15H120CX1

 XD25H120CX0
 XP15PJS120CL1B1
 IGW30N60H3FKSA1
 STGWA8M120DF3
 IGW08T120FKSA1
 IGW75N60H3FKSA1

 FGH60N60SMD_F085
 FGH75T65UPD
 STGWA15H120F2
 IKA10N60TXKSA1
 IHW20N120R5XKSA1
 RJH60D2DPP-M0#T2

 IKP20N60TXKSA1
 IHW20N65R5XKSA1