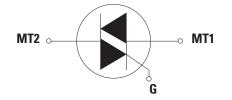

Qxx12xHx Series

Agency Approval


Agency	Agency File Number
91	E71639*
* - L Packago Oply	

* - L Package Only

Main Features

Symbol	Value	Unit
I _{T(RMS)}	12	A
$V_{\rm drm}/V_{\rm rrm}$	400, 600, 800 or 1000	V
I GT (Q1)	10 or 50	mA

Schematic Symbol

Description

This 12 Amp bidirectional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Standard alternistor triac components operate with in-phase signals in Quadrants I or III and ONLY unipolar negative gate pulses for Quadrant II or III. The alternistor triac will not operate in Quadrant IV. These are used in circuit applications requiring a high dv/dt capability.

Features & Benefits

- RoHS-compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 120 A
- The L-package has an isolation rating of 2500V_{RMS}
- Solid-state switching eliminates arcing or contact bounce that create voltage transients

 No contacts to wear out from reaction of switching events

RoHS

- Restricted (or limited) RFI generation, depending on activation point sine wave
- Requires only a small gate activation pulse in each half-cycle
- Recognized to UL 1557 as an Electrically Isolated Semiconductor Device

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, light dimmers, power tools, lawn care equipment, home/brown goods and white goods appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Additional Information

Samples

Absolute Maximum Ratings – Alternistor (3 Quadrants)

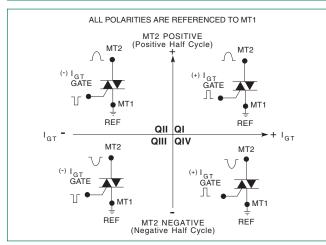
Symbol	Paramete	Value	Unit		
I _{T(RMS)}	RMS on-state current (full sine wave)	Oxx12LHy Oxx12RHy Oxx12NHy	$T_c = 90^{\circ}C$ $T_c = 105^{\circ}C$	12	А
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	110	٨
TSM	(full cycle, T_{J} initial = 25°C)	f = 60 Hz	t = 16.7 ms	120	A
l²t	l²t Value for fusing	-	t _p = 8.3 ms	60	A²s
di/dt	Critical rate of rise of on-state current	f = 120 Hz	T _J = 125°C	70	A/µs
I _{gtm}	Peak gate trigger current	t _p =20µs	T _J = 125°C	4	А
P _{G(AV)}	Average gate power dissipation	-	T_= 125°C	0.5	W
T _{stg}	Storage temperature range	-		-40 to 150	°C
TJ	Operating junction temperature range	-		-40 to 125	°C

Note: xx = voltage/10, y = sensitivity

Electrical Characteristics (T_j = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

Symbol	Test Conditions	Test Conditions Quadran		Qxx12xH2	Qxx12xH5	Unit
I _{gt}	$V_{\rm d} = 12V R_{\rm l} = 60 \Omega$	1 – 11 – 111	MAX.	10	50	mA
V _{gt}	$V_{_{ m D}} = 12V \ R_{_{ m L}} = 60 \ \Omega$	1 – 11 – 111	MAX.	1.3	1.3	V
V _{gd}	$V_{\rm D} = V_{\rm DRM}$ $R_{\rm L} = 3.3 \text{ k}\Omega$ $T_{\rm J} = 125^{\circ}\text{C}$	1 – 11 – 111	MIN.	0.2	0.2	V
I _H	I _T = 100mA	MAX.	15	50	mA	
		400V		300	750	
-l / -l.t.	$V_{D} = V_{DRM}$ Gate Open $T_{J} = 125^{\circ}C$	600V		200	650	
dv/dt		800V	MIN.	150	500	V/µs
	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 100^{\circ}{\rm C}$	1000V		150	300	
(dv/dt)c	(di/dt)c = 6.5 A/ms T _J = 12	MIN.	2	30	V/µs	
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 1$	7.0 A(pk)	TYP.	4	4	μs

Static Characteristics Symbol **Test Conditions** Value Unit V V_{TM} $I_{\rm TM} = 17.0 \text{A} \ t_{\rm p} = 380 \ \mu \text{s}$ MAX. 1.60 T_ = 25°C 400-1000V 10 μΑ I DRM T₁ = 125°C $\mathsf{V}_{_{\mathrm{D}}}=\mathsf{V}_{_{\mathrm{DRM}}}\,/\,\mathsf{V}_{_{\mathrm{RRM}}}$ 400-800V MAX. 2 I_{RRM} mΑ T_ = 100°C 3 1000V


Thermal Resistances

Symbol	Parameter	Value	Unit	
R _{e(J-C)}	Junction to case (AC)	Qxx12RHy Qxx12NHy	1.2	°C/W
(J-C)		Qxx12LHy	2.3	
D	Junction to ambient (AC)	Qxx12RHy	45	°C/W
R _{e(J-A)}	Sunction to amplefit (AC)	Qxx12LHy	90	0/00

Note: xx = voltage/10, y = sensitivity

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

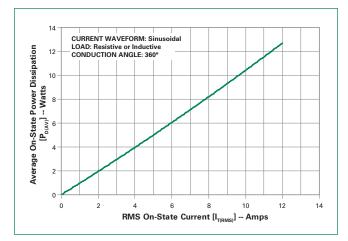
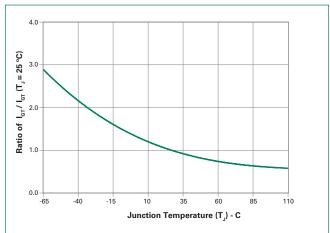
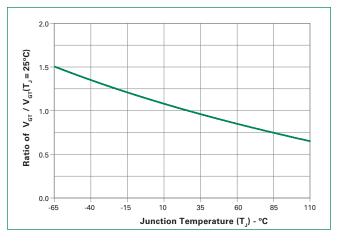
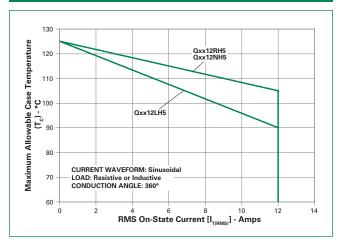
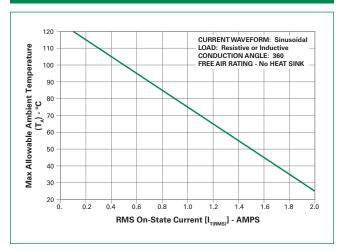
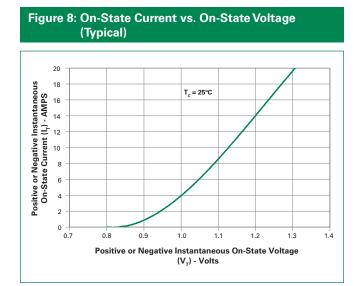



Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

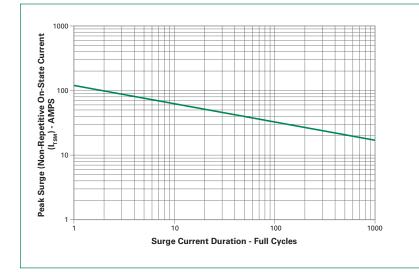
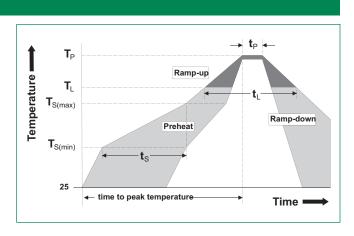


Figure 9: Surge Peak On-State Current vs. Number of Cycles


Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State Current [I _{T(RMS)}: Maximum] Rated Value at Specific Case Temperature

Notes:

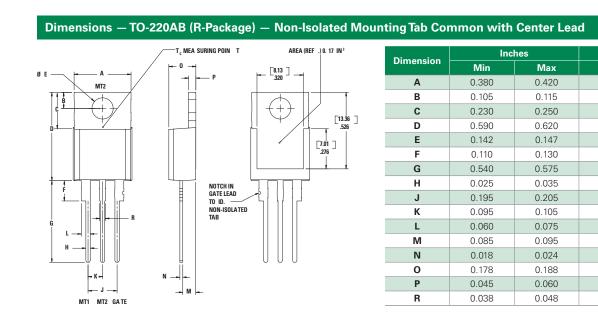
- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Cond	lition	Pb – Free assembly	
	- Temperature Min (T _{s(min)})	150°C	
Pre Heat	- Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 - 180 secs	
Average ram	p up rate (Liquidus Temp) (T_L) to peak	5°C/second max	
$\mathbf{T}_{_{\mathrm{S(max)}}}\mathbf{to}\mathbf{T}_{_{\mathrm{L}}}$ -	5°C/second max		
Reflow	- Temperature (T_L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 - 150 seconds	
Peak Temper	ature (T _P)	260 ^{+0/-5} °C	
Time within	5°C of actual peak Temperature (t_p)	20 – 40 seconds	
Ramp-down	Rate	5°C/second max	
Time 25°C to	p peak Temperature (T _P)	8 minutes Max.	
Do not exce	ed	280°C	

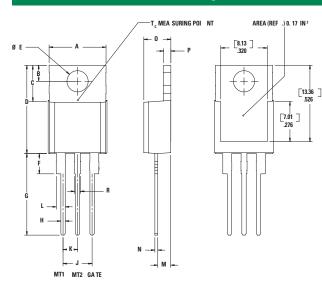
Physical Specifications

Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Terminal Material	Copper Alloy


Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications


Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Note: Maximum torque to be applied to mounting tab is 8 in-Ibs. (0.904 Nm).

Dimensions – TO-220AB (L-Package) – Isolated Mounting Tab

	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Мах	
А	0.380	0.420	9.65	10.67	
В	0.105	0.115	2.67	2.92	
С	0.230	0.250	5.84	6.35	
D	0.590	0.620	14.99	15.75	
E	0.142	0.147	3.61	3.73	
F	0.110	0.130	2.79	3.30	
G	0.540	0.575	13.72	14.61	
н	0.025	0.035	0.64	0.89	
J	0.195	0.205	4.95	5.21	
к	0.095	0.105	2.41	2.67	
L	0.060	0.075	1.52	1.91	
М	0.085	0.095	2.16	2.41	
N	0.018	0.024	0.46	0.61	
0	0.178	0.188	4.52	4.78	
Р	0.045	0.060	1.14	1.52	
R	0.038	0.048	0.97	1.22	

Note: Maximum torque to be applied to mounting tab is 8 in-lbs. (0.904 Nm).

Millimeters

Max

10.67

2.92

6.35

15.75

3.73

3.30

14.61

0.89

5.21

2.67

1.91

2.41

0.61

4.78

1.52

1.22

Min

9.65

2.67

5.84

14.99

3.61

2.79

13.72

0.64

4.95

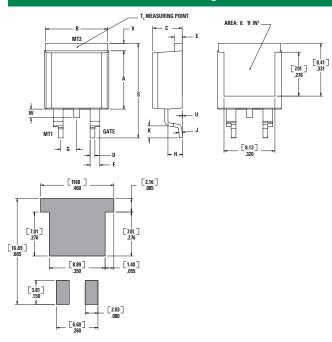
2.41

1.52

2.16

0.46

4.52


1.14

0.97

Thyristors 12 Amp Alternistor (High Commutation) Triacs

Dimensions – TO-263AB (N-Package) – D²Pak Surface Mount

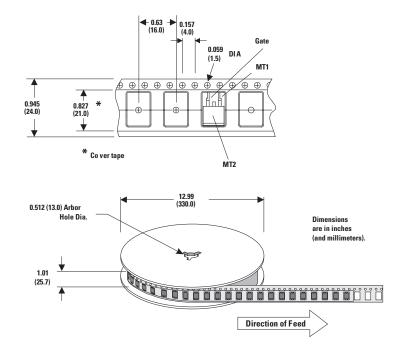
Dimension	Inc	hes	Millimeters	
Dimension	Min	Max	Min	Max
А	0.360	0.370	9.14	9.40
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
E	0.045	0.060	1.14	1.52
F	0.060	0.075	1.52	1.91
G	0.095	0.105	2.41	2.67
н	0.092	0.102	2.34	2.59
J	0.018	0.024	0.46	0.61
К	0.090	0.110	2.29	2.79
S	0.590	0.625	14.99	15.88
v	0.035	0.045	0.89	1.14
U	0.002	0.010	0.05	0.25
w	0.040	0.070	1.02	1.78

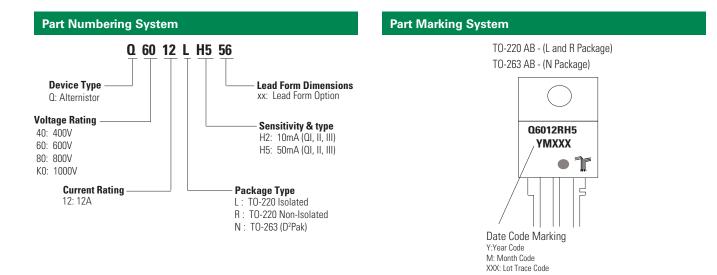
Product Selector

Part Number		Voltage		Gate Sensitivity Quadrants	Time	Deckens	
Part Number	400V	600V	800V	1000V	1 – 11 – 111	Туре	Package
Qxx12LH2	Х	Х	Х		10 mA	Alternistor Triac	TO-220L
Qxx12RH2	Х	Х	Х		10 mA	Alternistor Triac	TO-220R
Qxx12NH2	Х	Х	Х		10 mA	Alternistor Triac	TO-263 D2-PAK
Qxx12LH5	Х	Х	Х	Х	50 mA	Alternistor Triac	TO-220L
Qxx12RH5	Х	Х	Х	Х	50 mA	Alternistor Triac	TO-220R
Qxx12NH5	Х	Х	Х	Х	50 mA	Alternistor Triac	TO-263 D2-PAK

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Qxx12L/RHyTP	Qxx12L/RHy	2.2 g	Tube Pack	1000 (50 per tube)
Qxx12NHyTP	Qxx12NHy	1.6 g	Tube	1000 (50 per tube)
Qxx12NHyRP	Qxx12NHy	1.6 g	Embossed Carrier	500


Note: xx = Voltage/10; y = Sensitivity



Thyristors 12 Amp Alternistor (High Commutation) Triacs

TO-263 Embossed Carrier Reel Pack (RP)

Meets all EIA-481-2 Standards

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at <u>www.littelfuse.com/disclaimer-electronics</u>.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below :

ACST435-8B LIC01-215B-TR T2035H-6G BT137-600-0Q Z0410NF 1AA2 Z0409MF0AA2 Z0109NA 2AL2 ACS108-8SA-AP ACS108-8SN-TR ACST1635T-8FP BCR20RM-30LA#B00 T1205-600G-TR CMA60MT1600NHR ACS108-8TN-TR NTE5611 NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T-8I BTA312-600CT.127 T1210T-8G-TR T1210T-8G BT136S-600E,118 Z0109NN0,135 MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115 BT258-500R,127 BTA08-800BW3G BTA140-800,127 BTA30-600CW3G BTA30-600CW3G BTB08-800BW3G BTB16-600CW3G BTB16-600CW3G Z0405M-0AA2 Z0410MF0AA2 Z0109MN,135 T825T-6I T1635T-6I T1220T-6I NTE5638 TYN612MRG