Thyristors Datasheet

SxX8BBS Series EV Series 0.8 Amp Sensitive SCRs

RoHS

Main Features

Symbol	Value	Unit
I _{T(RMS)}	0.8	А
$V_{\rm drm}/V_{\rm rrm}$	600	V
Ι _{GT}	200	μΑ

Description

This new sensitive SCR component series offers 600V $\mathrm{V}_{_{\mathrm{DRM}}}$ and 0.8A $I_{\text{T(RMS)}}$ capability in the smallest package size in the industry, SOT23. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) applications. All SCRs junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- Very compact SOT23 SMT package
- Surge current capability up to 12A @ 60Hz
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 600V
- High dv/dt noise immunity
- Improved turn-off time (t_a) <</p> 25 µsec
- Sensitive gate for direct microprocessor interface
- RoHS compliant and Halogen-Free

Applications

The SxX8BBS series is specifically designed for GFCI (Ground Fault Circuit Interrupter) and applications.

Schematic Symbol G $^{\circ}$ KO -OA

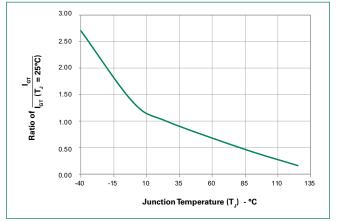
Pin out Anode 1 2 Cathode Gate

Absolute Maximum Ratings

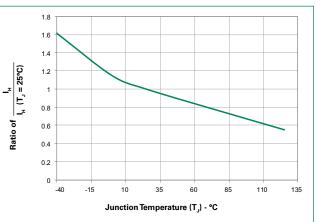
Symbol	Parameter	Value	Unit		
$V_{\rm DSM}/V_{\rm RSM}$	Peak non-repetitive blocking voltage	Pw=100µs		700	V
I _{T(RMS)}	RMS on-state current (full sine wave)		$T_c = 80^{\circ}C$	0.8	А
I _{T(AV)}	Average on-state current		$T_c = 80^{\circ}C$	0.51	А
1	Non repetitive surge peak on-state current		f= 50Hz	10	А
I _{TSM}	(Single cycle, T_j initial = 25°C)		f= 60Hz	12	А
l ² t	I ² t Value for fusing	$t_p = 10 \text{ ms}$	f= 50 Hz	0.5	A²s
11	i t value for fusing	$t_{p} = 8.3 \text{ ms}$	f= 60 Hz	0.6	A²s
di/dt	Critical rate of rise of on-state current $\rm I_{g}$ = 10mA	60 Hz	$T_{J} = 125^{\circ}C$	80	A/µs
I _{GM}	Peak Gate Current	$t_p = 20 \ \mu s$	$T_{J} = 125^{\circ}C$	1.0	А
P _{G(AV)}	Average gate power dissipation		$T_{J} = 125^{\circ}C$	0.1	W
T _{stg}	Storage junction temperature range			-40 to 150	°C
TJ	Operating junction temperature range			-40 to 125	°C

Electrical Characteristics	(Т	_	25°C	unless	otherwise	specified)
	11	_ =	ZO C,	uniess	other wise	specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
1	DC Cata Trigger Current	\/6\/R100_O	MIN.	50	μA
I _{GT}	DC Gate Trigger Current	$V_{_{\mathrm{D}}}$ = 6V, $\mathrm{R}_{_{\mathrm{L}}}$ = 100 Ω	MAX.	200	μA
V _{GT}	DC Gate Trigger Voltage	$V_{_{ m D}}$ = 6V, $R_{_{ m L}}$ = 100 Ω	MAX.	0.8	V
V _{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10 \mu A$	MIN.	8	V
I _H	Holding Current	Initial Current = 20mA	MAX.	10	mA
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$T_{J} = 125^{\circ}C$ $V_{D} = 67\%V_{DRM}/V_{RRM}$ Exp. Waveform, $R_{GK} = 1 k\Omega$	MIN.	50	V/µs
V_{gD}	Gate Non-Trigger Voltage		MIN.	0.2	V
t _q	Turn-Off Time	I _T =0.5A	MAX.	25	μs
t _{gt}	Turn-On Time	I _g =10mA,Pw= 15μsec, I _T = 1.6A(pk)	TYP.	2.0	μs


Static Characteristics ($T_1 = 25^{\circ}$ C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V _{TM}	Peak On-State Voltage	$I_{TM} = 1.6A (pk)$	MAX.	1.70	V
1 /1		$T_{J} = 25^{\circ}C$	MAX.	5	μΑ
DRM ^{/ I} RRM		$T_{J} = 125^{\circ}C$	MAX.	100	μΑ


Thermal Resistances

Symbol	Description	Value	Unit
R _{e(JC)}	Junction to case (AC)	45	°C/W
R _{e(J-A)}	Junction to ambient	220	°C/W

Figure 2: Normalized DC Holding Current vs. Junction Temperature

Thyristors Datasheet

SxX8BBS Series EV Series 0.8 Amp Sensitive SCRs

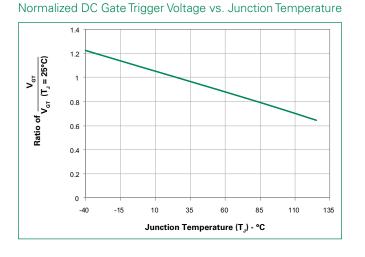
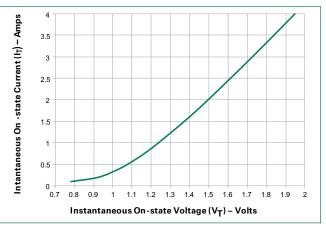
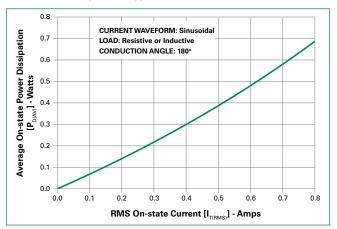
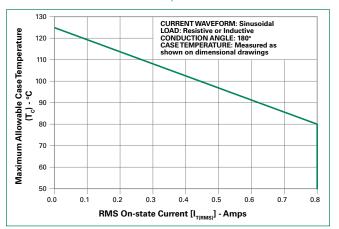
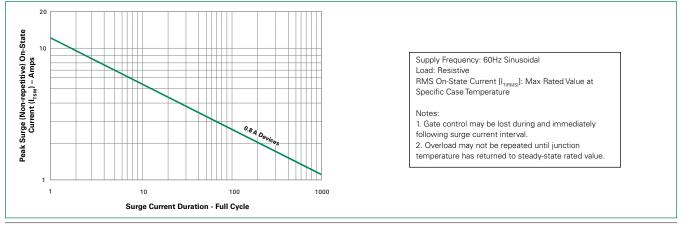
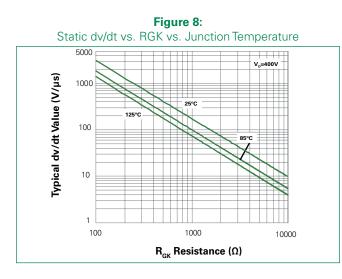


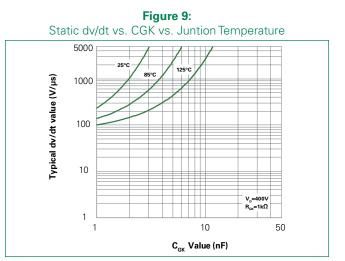
Figure 3:

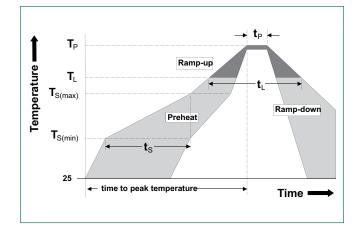
Figure 4: On-State Current vs. On-State Voltage (Typical)


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current


Figure 6: Maximum Allowable Case Temperature vs. On-State Current




SxX8BBS Series EV Series 0.8 Amp Sensitive SCRs

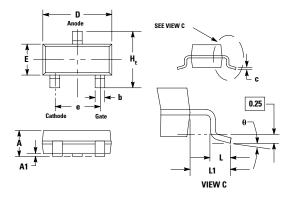
Soldering Parameters

Reflow Condition		Pb – Free assembly
	- Temperature Min (T _{s(min)})	150°C
Pre Heat	- Temperature Max (T _{s(max)})	200°C
	- Time (min to max) (t _s)	60 - 120 secs
Average ramp up rate (Liquidus Temp) (T_L) to peak		3°C/second max
$T_{S(max)}$ to T_L - F	Ramp-up Rate	5°C/second max
Reflow	- Temperature (T _L) (Liquidus)	217°C
nellow	- Time (min to max) (t _s)	60 – 150 seconds
Peak Tempera	ature (T _P)	260 ^{+0/-5} °C
Time within	5°C of actual peak Temperature (t _p)	30 seconds
Ramp-down Rate		6°C/second max
Time 25°C to peak Temperature (T _P)		8 minutes Max.
Do not excee	d	260°C

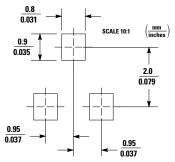
SxX8BBS Series EV Series 0.8 Amp Sensitive SCRs

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0.
Lead Material	Copper Alloy


Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Reliability/Environmental Tests

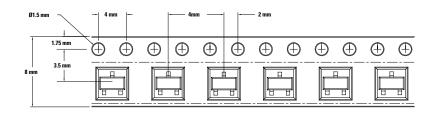
Test	Specifications and Conditions
HTRB (AC Blocking)	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ $\rm V_{\rm DRM}$ @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -55°C to +150°C; 15-min dwell-time
H3TRB	EIA / JEDEC, JESD22-A101 1008 hours; 160V - DC: 85°C; 85% rel humidity
UHAST	ESD22-A118, 96hours, 130°C, 85%RH
Resistance to Solder Heat	MIL-STD-750 Method 2031, 260°C, 10s
Solderability	ANSI/J-STD-002, category 3, Test A
Moisture Sensitivity Level	Level 1, JEDEC-J-STD-020D

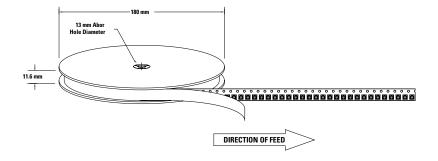
Dimensions – SOT-23

SOLDERING FOOTPRINT

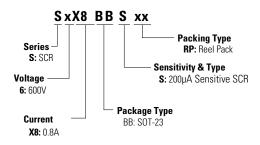
Dimensions		Inches		r	Villimeter	s
Dimensions	Min	Тур	Max	Min	Тур	Max
Α	0.04	0.04	0.04	0.89	1.02	1.12
A1	0.00	0.00	0.01	0.01	0.10	0.15
b	0.02	0.02	0.02	0.38	0.46	0.51
C	0.00	0.01	0.01	0.08	0.13	0.18
D	0.11	0.11	0.12	2.80	2.90	3.04
Е	0.05	0.05	0.06	1.19	1.30	1.40
е	0.07	0.08	0.08	1.78	1.91	2.06
L	0.02	0.02	0.02	0.40	0.49	0.60
L1	0.01	0.02	0.03	0.36	0.53	0.74
н	0.08	0.09	0.10	2.10	2.30	2.64
θ	0°	-	10°	0°	-	10°

Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
S6X8BBSRP	6X8	0.01g	Tape & Reel	3000


Product Selector

Part Number	Voltage 600V	Gate Sensitivity	Package
S6X8BBS	Х	200 µA	SOT-23



SOT-23 Reel Pack (RP) Specifications



Part Numbering System

Part Marking System

L: Location Code

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thyristor Surge Protection Devices - TSPD category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below :

BEP3100TA P0720SB P0720SC P1100SC P2300SB P2300SD P2600SB P3500SB SKKH 57/16E SKKH 72/22E H4 SKKH 72/08E NP1100SAT3G NP3100SBT3G SK20NHMH10 P3800FNLTP TISP4P035L1NR-S TISP4011H1BJR-S SKKH 72/20E H4 SKKH 172/16E TISP4350H3BJR-S TISP4A265H3BJR TISP7082F3DR-S TB0640H-13-F TB3100H-13-F TB3100M-13-F TB3500L-13-F TD330N16KOFHPSA2 P0080ECL P0080Q22CLRP P0080S3NLRP P0080SALRP P0080SAMCLRP P0080SB P0080SBLRP P0080SCLRP P0080SCMCLRP P0080SDLRP P3203UCLRP P0220SALRP P0220SCMCLRP P0300EAL P0300SALRP P0300SBLRP P0300SCLRP P0300SCMCLRP P3100Q12BLRP P0640SALRP P0640SBLRP P0640SCLRP P0640SCMCLRP