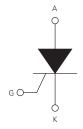


S802ECS



Main Features

Symbol	Value	Unit
I _{T(RMS)}	1.5	А
V _{DRM} /V _{RRM}	800	V
V_{DSM} (t _p = 50 µs)	1250	V
$V_{RSM}(t_p = 50 \ \mu s)$	900	V
I _{GT}	20 to 100	μΑ

Schematic Symbol

* TO92 with "GAK" pin output

Description

The S802ECS offers a high static dv/dt with a low turn off (tq) time. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) and AFCI (Arc Fault Circuit Interrupter), RCD (Residual Current Device) and RCBO (Residual Current Circuit Breaker with Overload Protection) applications. All SCR junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- Thru-hole packages
- Surge current capability < 20Amps
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 800V
- Non-repetitive direct surge peak off-state voltage (V_{DSM}) up to 1250V
- Non-repetitive reverse surge peak off-state voltage (V_{RSM}) up to 900V
- High dv/dt noise immunity
- Improved turn-off time (t_g)
- Sensitive gate for direct microprocessor interface
- Halogen free and RoHS compliant

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit		
I _{T(RMS)}	RMS on-state current (full sine wave)		$T_{c} = 52^{\circ}C$	1.5	А
I _{T(AV)}	Average on-state current		$T_c = 52$ °C	0.9	А
1	Non repetitive surge peak on-state current		F= 50Hz	20	А
ITSM	(Sine half wave, T _J initial = 25°C)		F= 60Hz	24	А
l²t	I ² t Value for fusing	$t_{p} = 10 \text{ ms}$	F = 50 Hz	2	A ² s
di/dt	Critical rate of rise of on-state current I _G = 10mA		T _J = 125°C	80	A/µs
I _{GM}	Peak Gate Current	t _p = 20 μs	T _J = 125°C	0.5	А
P _{G(AV)}	Average gate power dissipation	_	T _J = 125°C	0.2	W
T _{stg}	Storage junction temperature range	_	_	-40 to 150	°C
T _J	Operating junction temperature range	_	_	-40 to 125	°C

ThyristorsEV Series 1.5 Amp Sensitive SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Condi	tions	Limit	Value	Unit	
	DC Cata Triagas Current	V _D = 6\	/	MIN.	20	μΑ	
I _{GT}	DC Gate Trigger Current	$R_L = 100$	$R_L = 100 \Omega$ MAX.	MAX.	100	μΑ	
V _{GT}	DC Gate Trigger Voltage	$V_D = 6V$ $R_L = 100 \Omega$		MAX.	0.8	V	
V_{GRM}	Peak Reverse Gate Voltage	$I_{RG} = 10\mu$	ıA	MIN.	8	V	
I _H	Holding Current	R _{GK} = 1 KΩ Initial Current = 20mA		MAX.	3	mA	
dv/dt	Critical Rate-of-Rise of	$T_{J} = 125^{\circ}C$ $V_{D} = 67\% \text{ of } V_{DRM}$	$R_{GK} = 1 k\Omega$	MIN.	40	\// ₁	
uv/ut	Off-State Voltage	$V_D = 67\% \text{ of } V_{DRM}$ Exp. Waveform	Exp. Waveform	R _{GK} =220 Ω	MIN.	250	V/µs
V_{GD}	Gate Non-Trigger Voltage	$V_{D} = 1/2 V_{DRM}$ $R_{GK} = 1 k\Omega$ $T_{J} = 125^{\circ}C$		MIN.	0.2	V	
t _q	Turn-Off Time	I _T = 0.5A		MAX.	35	μs	
t _{gt}	Turn-On Time	I _G =10m. P _w = 15μs I _T = 1.6A(sec	TYP.	2.3	μѕ	

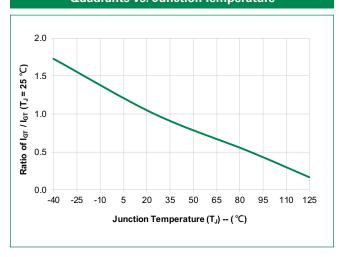
Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V _{TM}	Peak On-State Voltage	1.5A device $I_{TM} = 4A t_p = 380 \mu s$	MAX.	1.6	V
V _{T0}	Threshold Voltage		MAX	1.03	V
R_{D}	Dynamic Resistance		MAX	106	mΩ
1 /1	Off Ctata Current Book Bonetitive	T _J = 25°C	MAX.	3	μΑ
I _{DRM} /I _{RRM} O1	Off-State Current, Peak Repetitive	T _J = 125°C	MAX.	500	μΑ

Thermal Resistances

Symbol	Description	Test Conditions	Value	Unit
R _{th(JC)}	Junction to case (AC)	$I_{T} = 1.5A_{(RMS)}^{1}$	35	°C/W
R _{th(j-a)}	Junction to ambient	$I_{T} = 1.5A_{(RMS)}^{-1}$	150	°C/W

 $^{^{\}rm 1}\,60{\rm Hz}$ AC resistive load condition, 100% conduction.


2.0

0.0

-40 -25

Figure 1: Normalized DC Gate Trigger Current For All Quadrants vs. Junction Temperature

Watio of H. / H. (T. 1.0 0.5)

20

35 50

Junction Temperature (T_J) -- (°C)

65 80 95

Figure 2: Normalized DC Holding Current

vs. Junction Temperature

Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

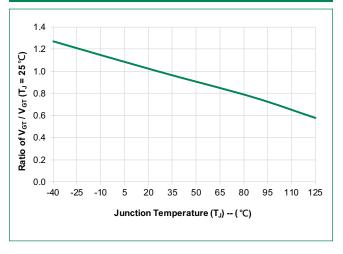


Figure 4: On-State Current vs. On-State Voltage (Typical)

-10

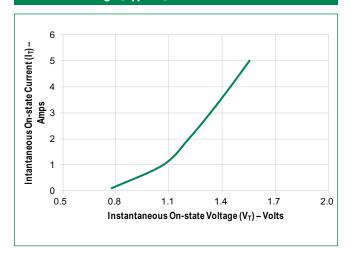


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

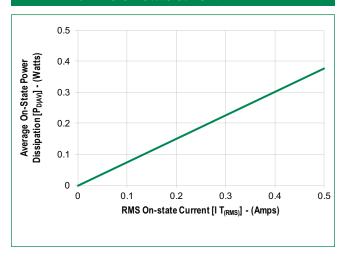
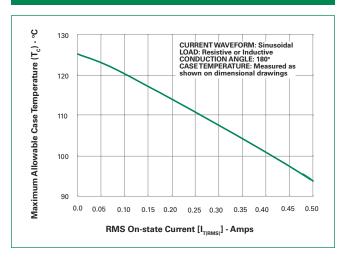
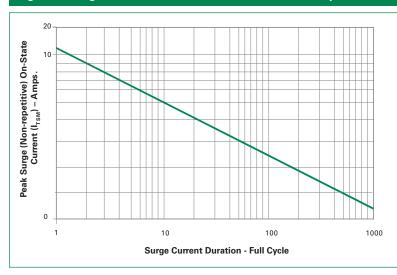
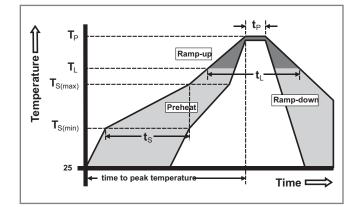




Figure 6: Maximum Allowable Case Temperature vs. On-State Current

Figure 7: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive


RMS On-State Current $[I_{T(RMS)}]$: Max Rated Value at Specific Case Temperature

Notes:

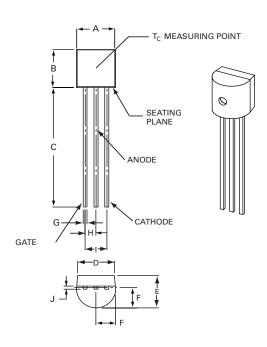
- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
$T_{S(max)}$ to T_{L}	- Ramp-up Rate	5°C/second max	
D (1	-Temperature (T _L) (Liquidus)	217°C	
Reflow	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _n)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peakTemperature (T _P)		8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated.		
Body Material	UL Recognized compound meeting flammability rating V-0.		
Lead Material	Copper Alloy		


Design Considerations

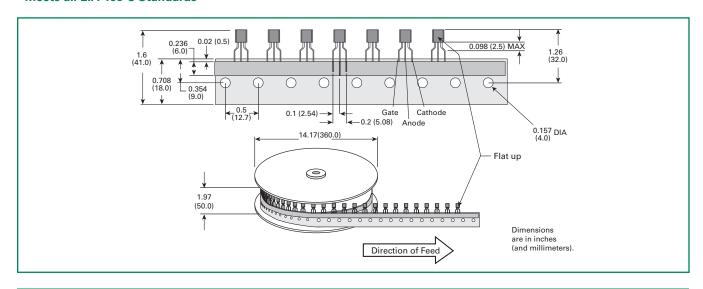
Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Reliability/Environmental Tests

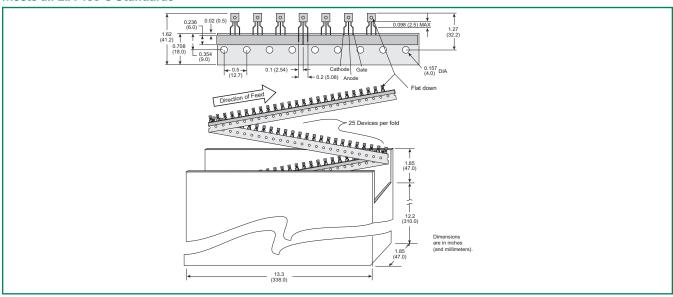
Test	Specifications and Conditions	
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours	
Temperature Cycling	erature Cycling MIL-STD-750, M-1051, 1000 cycles; -55°C to +150°C; 15-min dwell-time	
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity	
UHAST	JESD22-A118, 96 hours, 130°C, 85%RH	
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C	
Low-Temp Storage	1008 hours; -40°C	
Resistance to Solder Heat	MIL-STD-750 Method 2031	
Solderability	ANSI/J-STD-002, category 3, Test A	
Lead Bend	MIL-STD-750, M-2036 Cond E	

Dimensions - TO-92

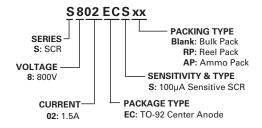
Dimension	Incl	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.175	0.205	4.450	5.200
В	0.170	0.210	4.320	5.330
С	0.500		12.70	
D	0.135		3.430	
Е	0.125	0.165	3.180	4.190
F	0.080	0.105	2.040	2.660
G	0.016	0.021	0.407	0.533
Н	0.045	0.055	1.150	1.390
1	0.095	0.105	2.420	2.660
J	0.015	0.020	0.380	0.500


Packing Option

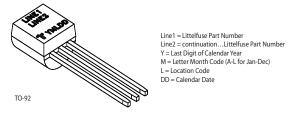
Part Number	Marking	Weight	Packing Mode	Base Quantity
S802ECS	S802ECS	0.217G	Bulk	2500
S802ECSRP	S802ECS	0.217G	Tape & Reel	2000
S802ECSAP	S802ECS	0.217G	Ammo Pack	2000


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards



TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications


Meets all EIA-468-C Standards

Part Numbering System

Part Marking System

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-16RIA120 VS-110RKI40 NTE5427 NTE5442 TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518 NTE5519 NTE5529 NTE5553 NTE5557 NTE5557 NTE5567 NTE5570 NTE5572 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589 NTE5598