

# Lonten N-channel 45V, 43A, 14m $\Omega$ Power MOSFET

| Description                                                     | Product Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| These N-Channel enhancement mode power field                    | V <sub>DSS</sub> 45V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| effect transistors are using trench DMOS                        | $R_{DS(on).max}$ @ $V_{GS}$ =10V 14m $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| technology. This advanced technology has been                   | I <sub>D</sub> 43A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| especially tailored to minimize on-state resistance,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| provide superior switching performance, and with                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| stand high energy pulse in the avalanche and                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| commutation mode. These devices are well suited                 | Pin Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| for high efficiency fast switching applications.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Features                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| • $45V,43A,R_{DS(ON),max}=14m\Omega@V_{GS}=10V$                 | Solution in the second |                |
| Improved dv/dt capability                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΪD             |
| <ul> <li>Fast switching</li> <li>100% EAS Guaranteed</li> </ul> | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|                                                                 | TO 254 TO 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _  i+┐ ∔       |
| Green device available                                          | TO-251 TO-252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ▫⊢⊢            |
| Applications                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • <sub>S</sub> |
| Motor Drives                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| <ul> <li>↓ UPS</li> </ul>                                       | N-Channel MOSFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim$         |
| DC-DC Converter                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pb             |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |

### Absolute Maximum Ratings T<sub>c</sub> = 25°C unless otherwise noted

| Parameter                                         | Symbol           | Value       | Unit |  |
|---------------------------------------------------|------------------|-------------|------|--|
| Drain-Source Voltage                              | V <sub>DSS</sub> | 45          | V    |  |
| Continuous drain current ( $T_c = 25^{\circ}C$ )  |                  | 43          | А    |  |
| Continuous drain current ( $T_c = 100^{\circ}C$ ) | I <sub>D</sub>   | 28          | А    |  |
| Pulsed drain current <sup>1)</sup>                | I <sub>DM</sub>  | 172         | A    |  |
| Gate-Source voltage                               | V <sub>GSS</sub> | ±20         | V    |  |
| Avalanche energy <sup>2)</sup>                    | E <sub>AS</sub>  | 49          | mJ   |  |
| Power Dissipation ( $T_c = 25^{\circ}C$ )         | PD               | 54          | W    |  |
| Storage Temperature Range                         | T <sub>STG</sub> | -55 to +150 | °C   |  |
| Operating Junction Temperature Range              | TJ               | -55 to +150 | °C   |  |

### **Thermal Characteristics**

| Parameter                            | Symbol                | Value | Unit |
|--------------------------------------|-----------------------|-------|------|
| Thermal Resistance, Junction-to-Case | $R_{	extsf{	heta}JC}$ | 2.3   | °C/W |



### Package Marking and Ordering Information

| Device     | Device Package | Marking    |
|------------|----------------|------------|
| LNH045R140 | TO-251         | LNH045R140 |
| LNG045R140 | TO-252         | LNG045R140 |

### **Electrical Characteristics** T<sub>J</sub> = 25°C unless otherwise noted

| Parameter                           | Symbol                 | Test Condition                                                     | Min. | Тур.  | Max. | Unit |
|-------------------------------------|------------------------|--------------------------------------------------------------------|------|-------|------|------|
| Static characteristics              |                        |                                                                    |      |       |      |      |
| Drain-source breakdown voltage      | BV <sub>DSS</sub>      | V <sub>GS</sub> =0 V, I <sub>D</sub> =250uA                        | 45   |       |      | V    |
| Gate threshold voltage              | V <sub>GS(th)</sub>    | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =250uA           | 1.0  |       | 2.0  | V    |
| <b>5</b>                            |                        | $V_{DS}$ =45 V, $V_{GS}$ =0 V, $T_{J}$ = 25°C                      |      |       | 1    | μA   |
| Drain-source leakage current        | I <sub>DSS</sub>       | $V_{DS}$ =36 V, $V_{GS}$ =0 V, $T_{J}$ = 125°C                     |      |       | 10   | μA   |
| Gate leakage current, Forward       | I <sub>GSSF</sub>      | V <sub>GS</sub> =20 V, V <sub>DS</sub> =0 V                        |      |       | 100  | nA   |
| Gate leakage current, Reverse       | I <sub>GSSR</sub>      | V <sub>GS</sub> =-20 V, V <sub>DS</sub> =0 V                       |      |       | -100 | nA   |
| Decision and the social second      |                        | V <sub>GS</sub> =10 V, I <sub>D</sub> =20 A                        |      | 10.7  | 14   | mΩ   |
| Drain-source on-state resistance    | R <sub>DS(on)</sub>    | V <sub>GS</sub> =4.5 V, I <sub>D</sub> =10 A                       |      | 13    | 18   | mΩ   |
| Forward transconductance            | <b>g</b> <sub>fs</sub> | V <sub>DS</sub> =5 V , I <sub>D</sub> =20A                         |      | 43    |      | S    |
| Dynamic characteristics             |                        |                                                                    |      |       |      |      |
| Input capacitance                   | C <sub>iss</sub>       |                                                                    |      | 1360  |      |      |
| Output capacitance                  | C <sub>oss</sub>       | $V_{DS} = 25 V, V_{GS} = 0 V,$<br>F = 1MHz                         |      | 129   |      | pF   |
| Reverse transfer capacitance        | C <sub>rss</sub>       |                                                                    |      | 102   |      |      |
| Turn-on delay time                  | t <sub>d(on)</sub>     |                                                                    |      | 10    |      |      |
| Rise time                           | tr                     | V <sub>DD</sub> = 25V,V <sub>GS</sub> =10V, I <sub>D</sub> =20 A   |      | 106   |      | - ns |
| Turn-off delay time                 | t <sub>d(off)</sub>    | $v_{DD} = 23v, v_{GS} = 10v, I_D = 20 \text{ A}$                   |      | 59.2  |      |      |
| Fall time                           | t <sub>f</sub>         |                                                                    |      | 200.8 |      |      |
| Gate resistance                     | R <sub>g</sub>         | V <sub>GS</sub> =0V, V <sub>DS</sub> =0V, F=1MHz                   |      | 3.2   |      | Ω    |
| Gate charge characteristics         |                        |                                                                    |      |       |      |      |
| Gate to source charge               | Q <sub>gs</sub>        |                                                                    |      | 5.8   |      |      |
| Gate to drain charge                | Q <sub>gd</sub>        | $V_{DS}=25 V, I_{D}=10A,$                                          |      | 3.9   |      | nC   |
| Gate charge total                   | Qg                     | - V <sub>GS</sub> = 10 V                                           |      | 31.6  |      |      |
| Drain-Source diode characteristic   | s and Maxi             | num Ratings                                                        |      |       |      |      |
| Continuous Source Current           | ls                     |                                                                    |      |       | 43   | А    |
| Pulsed Source Current <sup>3)</sup> | I <sub>SM</sub>        |                                                                    |      |       | 172  | А    |
| Diode Forward Voltage               | V <sub>SD</sub>        | $V_{GS}$ =0V, I <sub>S</sub> =10A, T <sub>J</sub> =25 $^{\circ}$ C |      |       | 1.2  | V    |
| Reverse Recovery Time               | t <sub>rr</sub>        |                                                                    |      | 18.5  |      | ns   |
| Reverse Recovery Charge             | Qrr                    | l <sub>s</sub> =10A,di/dt=100A/us, T <sub>J</sub> =25℃             |      | 9.8   |      | nC   |

Notes:

1: Repetitive Rating: Pulse width limited by maximum junction temperature.

2:  $V_{DD}$ =25V,  $V_{GS}$ =10V, L=0.5mH,  $I_{AS}$ =14A,  $R_G$ =25 $\Omega$ , Starting  $T_J$ =25 $^{\circ}$ C.

3: Pulse Test: Pulse Width  $\leq$ 300  $\mu$  s, Duty Cycle $\leq$ 2%.



## LNH045R140/LNG045R140



Figure 1. Typ. Output Characteristics

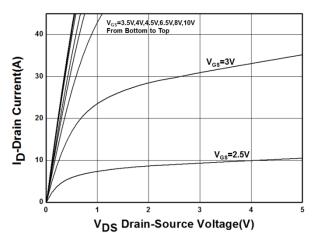
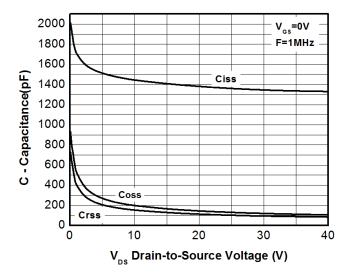
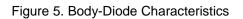
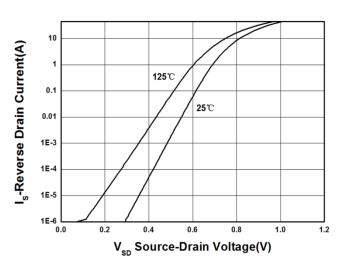
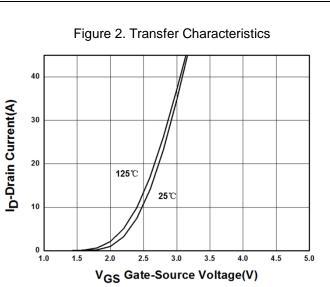
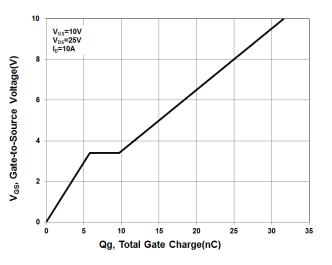
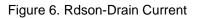
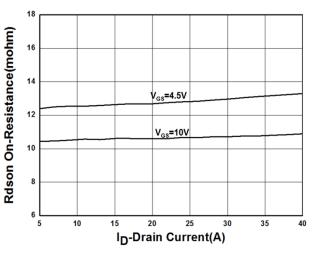







Figure 3. Capacitance Characteristics
















## LNH045R140/LNG045R140

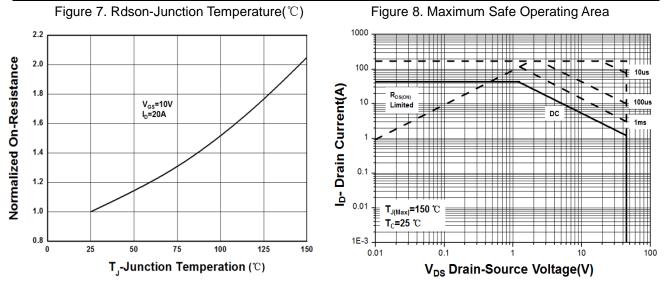
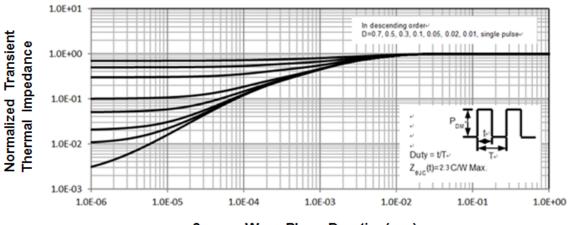
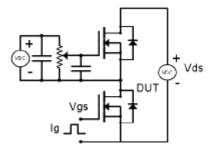




Figure 6. Normalized Maximum Transient Thermal Impedance




Square Wave Pluse Duration(sec)



### Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform



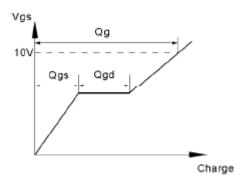
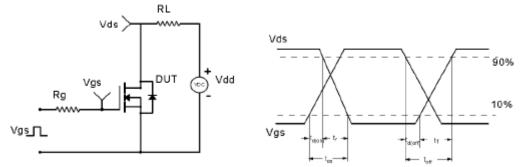
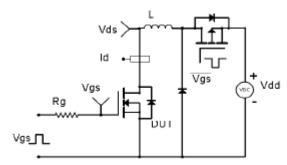
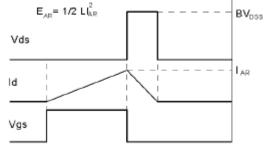
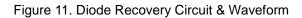
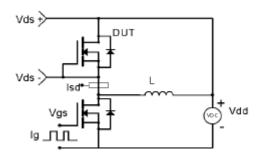
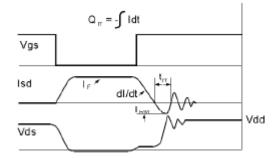


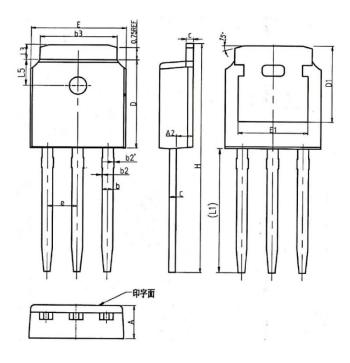

Figure 9. Resistive Switching Test Circuit & Waveforms



Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

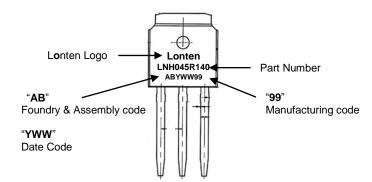






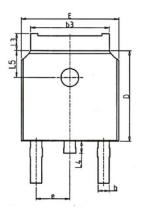


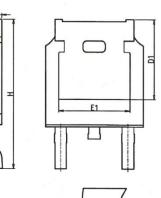


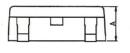



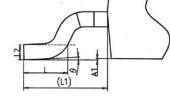

## **Mechanical Dimensions for TO-251**




| COMMON DIMENSIONS |          |         |       |          |       |       |
|-------------------|----------|---------|-------|----------|-------|-------|
| SYMBOL MM         |          |         | INCH  |          |       |       |
| STIVIDOL          | MIN      | NOM     | MAX   | MIN      | NOM   | MAX   |
| А                 | 2.20     | 2.30    | 2.38  | 0.087    | 0.091 | 0.094 |
| A2                | 0.97     | 1.07    | 1.17  | 0.038    | 0.042 | 0.046 |
| b                 | 0.68     | 0.78    | 0.90  | 0.027    | 0.031 | 0.035 |
| b2                | 0.00     | 0.04    | 0.10  | 0.000    | 0.002 | 0.004 |
| b2'               | 0.00     | 0.04    | 0.10  | 0.000    | 0.002 | 0.004 |
| b3                | 5.20     | 5.33    | 5.46  | 0.205    | 0.210 | 0.215 |
| с                 | 0.43     | 0.53    | 0.61  | 0.017    | 0.021 | 0.024 |
| D                 | 5.98     | 6.10    | 6.22  | 0.235    | 0.240 | 0.245 |
| D1                |          | 5.30REF |       | 0.209REF |       |       |
| E                 | 6.40     | 6.60    | 6.73  | 0.252    | 0.260 | 0.265 |
| E1                | 4.63     | -       | -     | 0.182    | -     | -     |
| е                 | 2.286BSC |         |       | 0.090BSC |       |       |
| н                 | 16.22    | 16.52   | 16.82 | 0.639    | 0.650 | 0.662 |
| L1                | 9.15     | 9.40    | 9.65  | 0.360    | 0.370 | 0.380 |
| L3                | 0.88     | 1.02    | 1.28  | 0.035    | 0.040 | 0.050 |
| L5                | 1.65     | 1.80    | 1.95  | 0.065    | 0.071 | 0.077 |

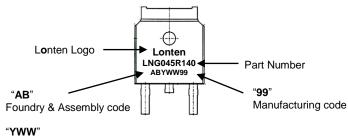

#### **TO-251 Part Marking Information**




## **Mechanical Dimensions for TO-252**










| COMMON DIMENSIONS |           |         |       |          |       |       |
|-------------------|-----------|---------|-------|----------|-------|-------|
| CYMDOL            | SYMBOL MM |         | INCH  |          |       |       |
| STINDUL           | MIN       | NOM     | MAX   | MIN      | NOM   | MAX   |
| A                 | 2.20      | 2.30    | 2.38  | 0.087    | 0.091 | 0.094 |
| A1                | 0.00      | -       | 0.20  | 0.000    | -     | 0.008 |
| A2                | 0.97      | 1.07    | 1.17  | 0.038    | 0.042 | 0.046 |
| b                 | 0.68      | 0.78    | 0.90  | 0.027    | 0.031 | 0.035 |
| b3                | 5.20      | 5.33    | 5.46  | 0.205    | 0.210 | 0.215 |
| с                 | 0.43      | 0.53    | 0.61  | 0.017    | 0.021 | 0.024 |
| D                 | 5.98      | 6.10    | 6.22  | 0.235    | 0.240 | 0.245 |
| D1                |           | 5.30REF | -     | 0.209REF |       |       |
| Е                 | 6.40      | 6.60    | 6.73  | 0.252    | 0.260 | 0.265 |
| E1                | 4.63      | -       | -     | 0.182    | -     | -     |
| е                 |           | 2.286BS | С     | 0.090BSC |       |       |
| Н                 | 9.40      | 10.10   | 10.50 | 0.370    | 0.398 | 0.413 |
| L                 | 1.38      | 1.50    | 1.75  | 0.054    | 0.059 | 0.069 |
| L1                | 2.90REF   |         |       | 0.114REF |       |       |
| L2                | 0.51BSC   |         |       | 0.020BSC |       |       |
| L3                | 0.88      | -       | 1.28  | 0.035    | -     | 0.050 |
| L4                | 0.50      | -       | 1.00  | 0.020    | -     | 0.039 |
| L5                | 1.65      | 1.80    | 1.95  | 0.065    | 0.071 | 0.077 |
| θ                 | 0°        | -       | 8°    | 0°       | -     | 8°    |

### **TO-252 Part Marking Information**



"YWW" Date Code



## LNH045R140/LNG045R140

#### Disclaimer

The content specified herein is for the purpose of introducing LONTEN's products (hereinafter "Products"). The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

LONTEN does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of the Products or technical information described in this document.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LONTEN shall bear no responsibility in any way for use of any of the Products for the above special purposes.

Although LONTEN endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a LONTEN product.

The content specified herein is subject to change for improvement without notice. When using a LONTEN product, be sure to obtain the latest specifications.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by LONTEN manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60\_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3