

General Description

The LP3990 is designed for portable RF and wireless applications with demanding performance and space requirements. The LP3990 performance is optimized for battery-powered systems to deliver ultra low noise and low quiescent current. The LP3990 also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The LP3990 consumes less than 0.01µA in shutdown mode and has fast turn-on time less than 50µs. The other features include ultra low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. It is available in the 1mm × 1mm X2SON packages.

LowPowerSemi 微源半導體

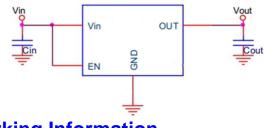
Order Information

F: Pb-Free

Package Type

QV: X2SON

LP3990


Features

- Ultra-thin Package
- 2V- 5.5V Input Voltage Range
- Low Dropout : 130mV @ 200mA
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6Vand 5V Fixed
- 300mA Output Current, 450mA Peak Current ٠
- High PSSR:-75dB at 1KHz
- ٠ < 0.01uA Standby Current When Shutdown
- Available in 1mm×1mm X2SON Package ٠
- TTL-Logic-Controlled Shutdown Input ٠
- Ultra-Fast Response in Line/Load transient ٠
- Current Limiting and Thermal Shutdown Protection
- Quick start-up (typically 50uS)

Applications

- Portable Media Players/MP3 players
- \diamond Cellular and Smart mobile phone
- ♦ LCD
- ∻ DSC Sensor
- Wireless Card \diamond

Typical Application Circuit

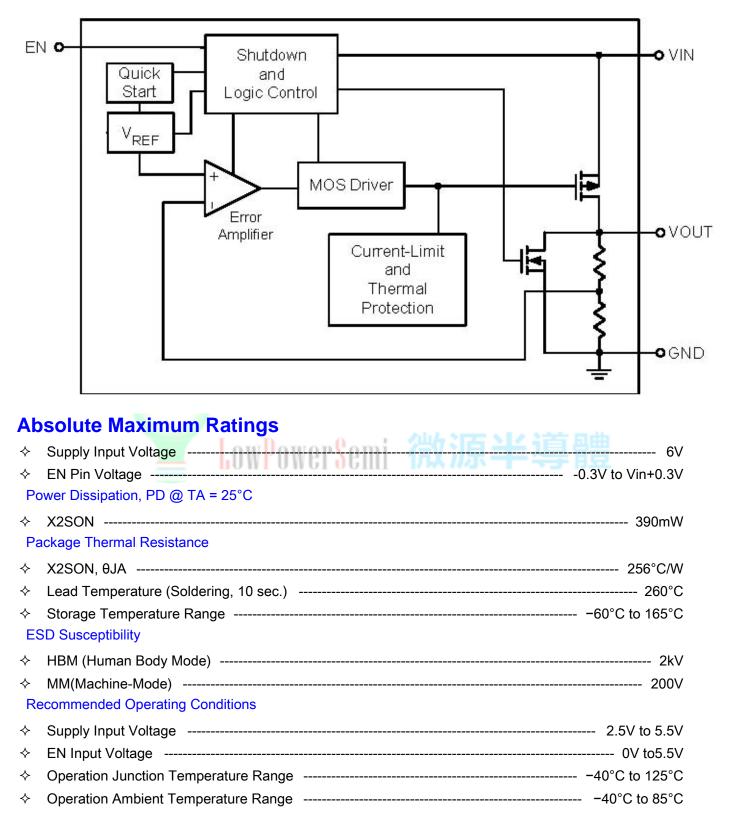
Marking Information

Device	Marking	Package	Shipping	
LP3990-18QVF	CXX	X2SON	10K/REEL	
LP3990-30QVF	GXX	X2SON	10K/REEL	
X: Series numbers.				

 Outp	out Type
12:	1.2V
15:	1.5V
18:	1.8V
25:	2.5V
28:	2.8V
30:	3.0V
33:	3.3V
50:	5.0V

Functional Pin Description

Package Type	Pin Configurations
1mm×1mm X2SON	VIN EN 4 3 GND 1 2 VOUT GND

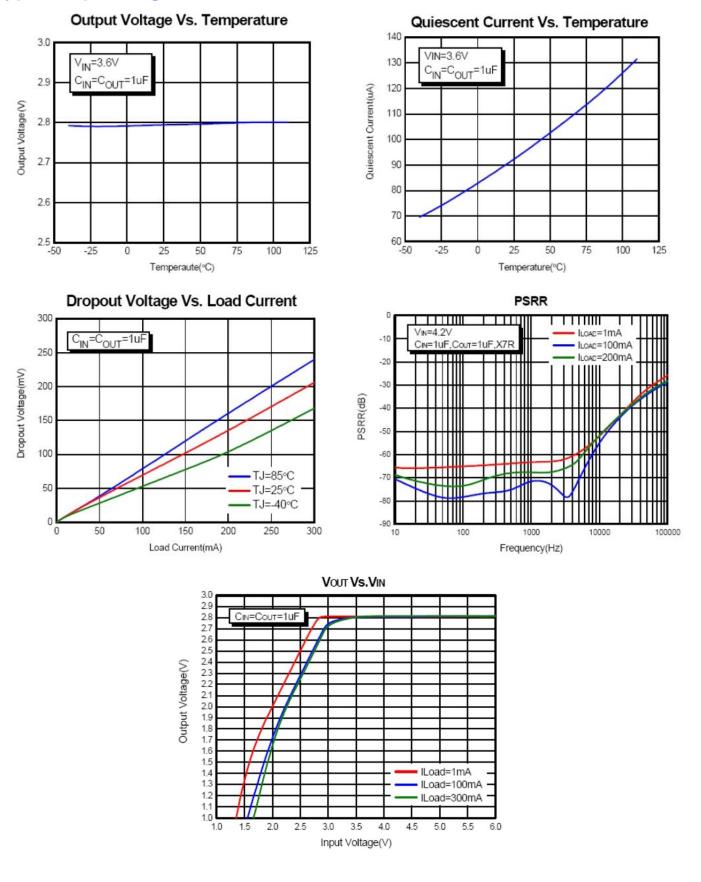

Pin Description

Pin	Name	Description		
1	VOUT	Output Voltage.		
2	GND	Ground.		
3	EN	Chip Enable (Active High). Note that this pin is high impedance.		
4	VIN	Power Input Voltage.		
		LowPowerSemi ત以源丰导體		

LP3990

Function Diagram

LP3990


Electrical Characteristics

(VIN = VOUT + 1V, CIN = COUT = 1μ F, TA = 25° C, unless otherwise specified)

Para	imeter	Symbol	Test Conditions	Min	Тур.	Max	Units
Output Voltage Accuracy		Δνουτ	IOUT = 1mA	-2		+2	%
Output Loading Current		ILOAD	VEN=VIN,VIN>2.5V		300		mA
Current Limit		ILIM	RLOAD = 1Ω	350	450		mA
Quiescent Current		IQ	VEN ≥ 1.2V, IOUT = 0mA		50		μA
Dropout Voltage		VDROP -	IOUT = 200mA, VOUT > 2.8V		130	200	mV
			IOUT = 300mA, VOUT > 2.8V		220	300	
Line Re	egulation	ΔVLINE	VIN = (VOUT + 1V) to 5.5V, IOUT = 1mA			0.2	%
Load R	egulation	ΔLOAD	1mA < IOUT < 200mA			2	%
Standby Current		ISTBY	VEN = GND, Shutdown		0.01	1	μA
EN Input Bias Current		IIBSD	VEN = GND or VIN		2	3.5	μA
EN Threshold	Logic-Low Voltage	VIL	VIN = 3V to 5.5V, Shutdown			0.4	V
	Logic-High Voltage	VIH	VIN = 3V to 5.5V, Start-Up	1.4			
Output Noise Voltage		owPow	10Hz to 100kHz, IOUT = 200mA, COUT = 1μF	導	100		uVRMS
Power Supply	y f = 1kHz	PSRR	C _{OUT} = 1µF,		-75		dP
Rejection Rate f = 10kH			I _{OUT} = 10mA		-68		dB
Thermal Shutdown Temperature		TSD			150		°C

Typical Operating Characteristics

Applications Information

Like any low-dropout regulator, the external capacitors used with the LP3990 must be carefully selected for regulator stability and performance. Using a capacitor whose value is > 1µF on the LP3990 input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The LP3990 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1µF with ESR is > $25m\Omega$ on the LP3990 output ensures stability. The LP3990 still works well with output capacitor of other types due to the wide stable ESR range. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located not more than 0.5 inch from the VOUT pin of the LP3990 and returned to a clean analog ground.

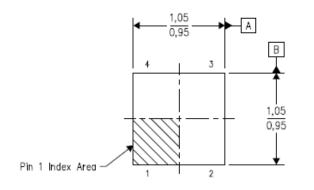
Start-up Function Enable Function

The LP3990 features an LDO regulator enable/disable function. To assure the LDO regulator will switch on, the EN turn on control level must be greater than 1.4 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protecting the system, the LP3990 have a quick-discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

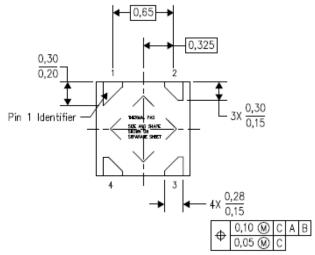
Thermal Considerations

Thermal protection limits power dissipation in LP3990. When the operation junction temperature exceeds 150°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 25°C. For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$PD = (VIN-VOUT) \times IOUT + VIN \times IQ$


The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient.

The maximum power dissipation can be calculated by following formula:


$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$


Packaging Information

Bottom View

Bottom View

Exposed Thermal Pad Dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by LOWPOWER manufacturer:

Other Similar products are found below :

M38D29FFHP#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB#30 AP7363-SP-13 NCP103AMX285TCG NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ L9708 L970813TR 030014BB 059985X EAN61387601 EAN61573601 NCP121AMX173TCG NCP4687DH15T1G NCV8703MX30TCG 701326R 702087BB 755078E TCR2EN28,LF(S LM1117DT-1.8/NO LT1086CM#TRPBF AZ1085S2-1.5TRE1 MAX15101EWL+T NCV8170AXV250T2G SCD337BTG TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1 MP2013GQ-P