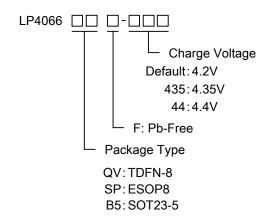
1A Single Chip Li-Ion and Li-Polymer Charger

General Description


The LP4066 is a complete constant-current/ constant voltage linear charger for single cell lithium-ion battery. Its SOT23-5/TDFN-8/ESOP8 package and low external component count make the LP4066 ideally suited for portable applications.

The charge current and termination current could program by external resistors. While the battery voltage is lower than 2.6V, the charge current is typically 10% of the programmed charge current. During the constant voltage phases, if the charge current reduces to the termination current level, the device will disable the internal power MOS and CHRG goes high impedance, which signals the charge cycle is termination.

When the input supply is removed, the LP4066 automatically enters a low current state, dropping the battery drain current to less than 1µA.

Other features include charge current monitor, under voltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.

Order Information

Features

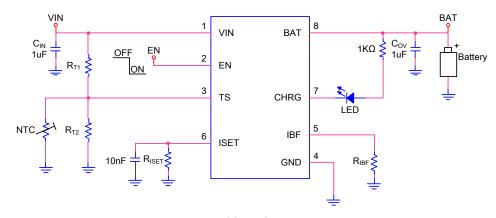
- Input Voltage up to 36V
- Battery Maximum Voltage up to 20V
- Input Over Voltage Protection: 6.3V
- Short-circuit protection
- Programmable Charge Current up to 1000mA
- ◆ <1µA Battery Reverse Current</p>
- Protection of Reverse Connection of Battery
- No MOSFET, Sense Resistor or Blocking Diode Required
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- ◆ SOT23-5 /TDFN-8/ESOP8 Package
- ◆ RoHS Compliant and 100% Lead (Pb)-Free

Applications

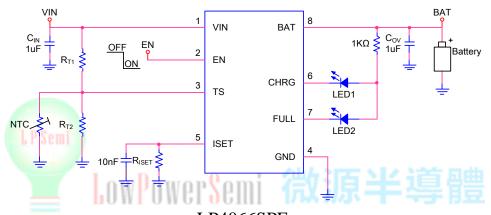
- Portable Media Players/Game
- ♦ Power Bank
- Bluetooth Applications
- ♦ PDA/MID

Marking Information

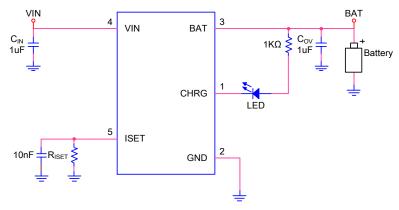
Device	Marking	Package	Shipping	
Device		1 ackage	Griipping	
LP4066B5F	LP4066	SOT23-5	3K/RELL	
	YWX			
LP4066B5F-435	LP4066	SOT23-5	3K/RELL	
LI 4000B0I 400	435YWX	001200	SIVILLE	
LD40CCDEE 44	LP4066	COTOO F	2K/DELI	
LP4066B5F-44	44YWX	SOT23-5	3K/RELL	
	LPS			
LP4066QVF	LP4066	TDFN-8	4K/RELL	
	YWX			
	LPS			
LP4066QVF-435	LP4066	TDFN-8	4K/RELL	
	435YWX			
	LPS			
LP4066QVF-44	LP4066	TDFN-8	4K/RELL	
	44YWX			
V	LPS			
LP4066SPF	LP4066	ESOP8	4K/RELL	
	YWX LUNI UN	ESOP8	心一等	
	LPS			
LP4066SPF-435	LP4066	ESOP8	4K/RELL	
	YWX			
	LPS			
LP4066SPF-44	LP4066	ESOP8	4K/RELL	
	YWX			
Manking indication	L	1	1	


Marking indication:

Y:Production year W:Production week X: Series Number


LP4066-04

Apr.-2020


Typical Application Circuit

LP4066QVF

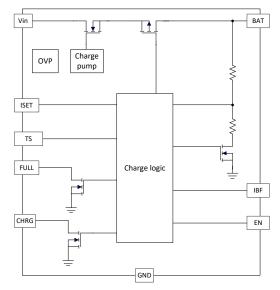
LP4066SPF

LP4066B5F

LP4066-04

Apr.-2020

Functional Pin Description


Package Type	SOT23-5	TDFN-8	ESOP8
Pin Configurations	CHRG 1 5 ISET GND 2 BAT 3 4 VIN TOP VIEW	VIN 1 / 8 BAT EN 2 9(PAD) 7 CHRG TS 3 6 ISET GND 4 I 5 IBF	VIN 1 8 BAT EN 2 9 7 FULL TS 3 6 CHRG GND 4 5 ISET TOP VIEW

Pin Description

	Pin No.			DECODIDE
NAME	TDFN-8	SOT23-5	ESOP8	DESCRIPTION
VIN	1	4	1	VIN is the input power source. Connect to a wall adapter.
EN	2		2	Charge Enable Input (active low).
TS	3	L P Semi	3	Temperature detection pin
GND	4	2	04 ⁴) 04	GND is the connection to system ground.
IBF	5		10111 01	Termination Current Program.
ISET	6	5	5	Charge Current Program. The charge current is programmed by connecting a 1% resistor(R _{ISET}) to ground. $I_{BAT} = \frac{1800 \times V_{ISET}}{R_{ISET}}$
CHRG	7	1	6	Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low by an internal NMOS. When the charge cycle is completed, the pin could be pulled High by an external pull high resistor.
FULL	-	-	7	Open-Drain Charge Status Output. When the battery is charging, the FULL pin could be pulled High by an external pull high resistor. When the charge cycle is completed, the pin is pulled Low by an internal N-channel MOSFET.
BAT	8	3	8	BAT is the connection to the battery. Typically a 10µF Tantalum capacitor is needed for stability when there is no battery attached. When a battery is attached, only a 1uF ceramic capacitor is required.

LP4066-04 Apr.-2020

Function Block Diagram

Absolute Maximum Ratings Note

\$	Input Voltage to GND	0.3V to 36V
	BAT Voltage GND	5V to 20V
\diamondsuit	Other pin to GND	0.3V to 6.5V
\diamondsuit	Maximum Junction Temperature	125°C
\diamond	Maximum Soldering Temperature (at leads, 10 sec)	260°C
	Storage Temperature	

Thermal Information

\diamond	Maximum Power Dissipation (P _D ,T _A =25°C)		0.6W
------------	--	--	------

♦ Thermal Resistance (θ_{JA}) ------ 200°C/W

ESD Susceptibility

\diamond	HBM(Human Body Mode)	 2KV
\diamond	MM(Machine Mode)	 200V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

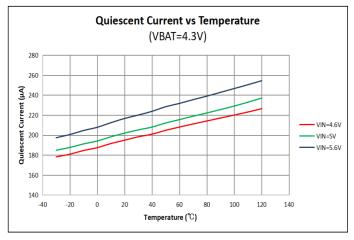
Recommended Operating Conditions

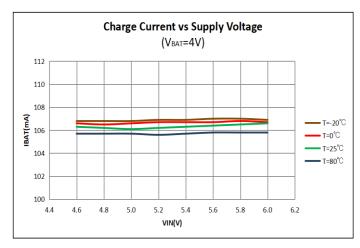
\diamond	Input supply vo	ltage		4.5V to	5.8\	V
------------	-----------------	-------	--	---------	------	---

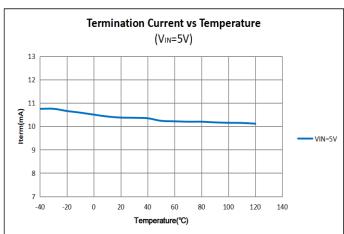
LP4066-04

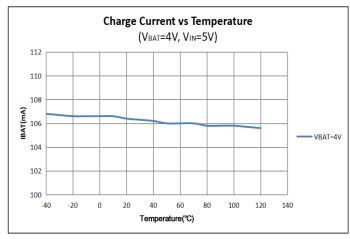
Electrical Characteristics

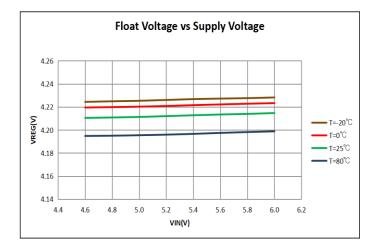
(T_A=25°C, V_{IN} =5V, unless otherwise noted.)

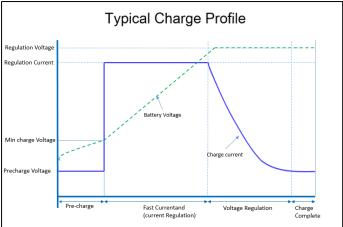

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNITS
lin	Input Supply Current	I _{BAT} =4.2V		40		uA
V _{EN_ON}	EN Logic-Low Voltage Threshold				0.4	V
V _{EN_OFF}	EN Logic-High Voltage Threshold		1.4			V
		I _{BAT} =40mA,,LP4066XXX	4.158	4.2	4.242	V
VFLOAT	Regulated Output (Float) Voltage	I _{BAT} =40mA,,LP4066XXX-435	4.307	4.35	4.3935	V
		I _{BAT} =40mA,,LP4066XXX-44	4.356	4.4	4.444	V
Vuv	VIN Under Voltage Lockout Threshold	From V _{IN} Low to High		3.3		V
Vovp	Input Voltage OVP	V _{IN} Rising		6.3		V
V _{OVP_HYS}	OVP Hysteresis			300		mV
		R _{ISET} =3.6k, Current Mode		500		mA
Іват	BAT Pin Current	R _{ISET} =18k, Current Mode		100		mA
		V _{IN} =float		0.1		uA
I _{TRIKL}	Trickle Charge Current	VBAT <vtrikl, current="" mode<="" riset="10k," td=""><td></td><td>10</td><td></td><td>%Іват</td></vtrikl,>		10		%Іват
V _{TRIKL}	Trickle Charge Threshold Voltage	V _{BAT} Rising	苦	2.6		V
VTRHYS	Trickle Charge Hysteresis Voltage	出说:	等 1	150		mV
	Townshooting Organist Three-bald	LP4066B5F/LP4066SPF		10		%Іват
ITERM	Termination Current Threshold	LP4066QVF	5		90	%Іват
VISET	ISET Pin Voltage	R _{ISET} =10k, Current Mode		1		V
I _{CHRG}	CHRG Pin Weak Pull-Down Current	V _{CHRG} =5V			5	uA
VCHRG	CHRG Pin Output Low Voltage	I _{CHRG} =5mA			0.5	V
V _{TS_H}	TS high voltage thresholds	LP4066QVF/LP4066SPF		60		%Vin
V _{TS_L}	TS low voltage thresholds	LP4066QVF/LP4066SPF		30		%V _{IN}
V _{TS_HYS}	TS voltage hysteresis	LP4066QVF/LP4066SPF		30		mV
ΔV_{RECHRG}	Recharge Battery Threshold Voltage	V _F LOAT-V _{RECHRG}		150		mV
T _{LIM}	Junction Temperature in C	Junction Temperature in Constant Temperature Mode		125		°C


LP4066-04 Apr.-




Typical Performance Characteristics


 $(C_{IN}=C_{OUT}=10uF,R_{ISET}=16.5K, unless otherwise noted)$



LP4066-04

Apr.-2020

Application Information

Input Voltage Range

The LP4066 has built-in input voltage surge protection as high as +36V. The charger IC will be automatically disabled when the input voltage is lower than 3.3V or higher than 6.3V.

A charge cycle begins when the voltage at the VIN pin rises above the 4.4V level, when a battery is connected to the charger output. If the BAT pin is less than 2.6V, the charger enters trickle charge mode. In this mode, the LP4066 supplies approximately 1/10 the ISET programmed charge current to bring the battery voltage up to a safe level for full current charging. When the BAT pin voltage rises above 2.6V, the charger enters constant-current mode(CC), where the ISET programmed charge current is supplied to the battery. When the BAT pin approaches the final float voltage, the LP4066 enters constant-voltage mode(CV) and the charge current begins to decrease, and the battery full indication is set when the charge current in the CV mode is reduced to the programmed full battery current.

ISET programming Charge Current

The charge current (I_{BAT}) is set by a resistor (R_{ISET}) connecting from the ISET pin to GND. The relationship of the charge current and the programming resistance is established by the following equations ($V_{ISET}=1V$).

$$I_{BAT} = \frac{1800 \times V_{ISET}}{R_{ISET}}$$

Termination Charge Current Programmed

(LP4066QVF)

The battery charge Termination current threshold (I_{BF}) is programmed by connecting a resistor R_{IBF} from the I_{BF} pin to GND:

$$I_{TERM} = \frac{R_{ISET} \times I_{BAT}}{R_{IBF}}$$

Battery Temperature Detection

(LP4066QVF/LP4066SPF)

An internal resistor divider sets the low temperature threshold (VTS_L) and high temperature threshold (VTS_H) at 60% of VIN and 30% of VIN, respectively. For a given TS thermistor, select an appropriate RT1 and RT2 to set the TS window with following equation:

$$\frac{V_{TS_L}}{V_{IN}} = \frac{R_{T2} \parallel R_{TS_COLD}}{R_{T1} + R_{T2} \parallel R_{TS_COLD}} = T_L = 60\%$$

$$\frac{V_{TS_H}}{V_{IN}} = \frac{R_{T2} \parallel R_{TS_HOT}}{R_{T1} + R_{T2} \parallel R_{TS_HOT}} = T_H = 30\%$$

Where RTS_HOT is the value of the TS resistor at the upper bound of its operating temperature range, and RTS_COLD is its lower bound. The two resistors RT1 and RT2 determine the upper and lower temperature limits independently. This flexibility allows the IC to operate with most TS resistors for different temperature range requirements. Calculate RT1 and RT2 with following equation:

$$\begin{split} R_{T1} &= \frac{R_{TS_HOT} \times R_{TS_COLD} \times (T_L - T_H)}{T_H \times T_L \times \left(R_{TS_COLD} - R_{TS_HOT}\right)} \\ R_{T2} &= \frac{R_{TS_HOT} \times R_{TS_COLD} \times (T_L - T_H)}{(1 - T_L) \times T_H \times R_{TS_COLD} - (1 - T_H) \times T_L \times R_{TS_HOT}} \end{split}$$

Automatic Recharge

Once the charge cycle is terminated, the LP4066 continuously monitors the voltage on the BAT pin. A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations.

LP4066-04

Apr.-2020

Charge Status Indicator(CHRG/FULL)

After application of a 5V source, the input voltage rises above the UVLO and sleep thresholds (VIN>VBAT+VDT), but is less than OVP (VIN<VOVP), then the PG turns on and provides a low impedance path to ground.

CHRG has two different states: strong pull-down (~5mA) and high impedance. The strong pull-down state indicates that the LP4066A is in a charge cycle. When the charger is entered CV mode and once the charge current has reduced to the battery full charge current threshold (I_{TERM}), the CHRG pin will become high impedance.

Function	CHRG	FULL
Charging	Low	High
Charge Finish	High	Low

Thermal Limiting

An internal thermal feedback loop reduces the I_{SET} programmed charge current if the die temperature attempts to rise above a preset value of approximately 125°C. This feature protects the LP4066 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the LP4066. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.

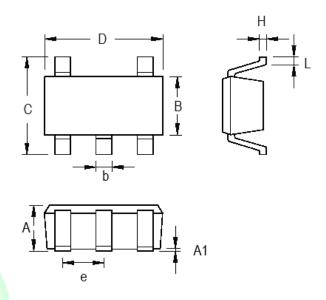
Power Dissipation

The conditions that cause the LP4066 to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET calculated to be approximately:

$$P_{D} = (V_{IN} - V_{BAT}) \times I_{BAT}$$

Where P_D is the power dissipated, V_{IN} is the input supply voltage, V_{BAT} is the battery voltage and I_{BAT} is the charge current. The approximate ambient temperature at which the thermal feedback begins to protect the IC is:

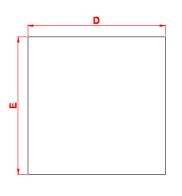
$$T_A = 125^{\circ}C - P_D \times \theta_{JA}$$

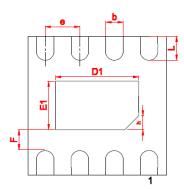

LP4066-04

Apr.-2020

Packaging Information

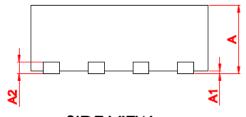
SOT23-5




L P Semi

Cumbal	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
А	0.889	1.295	0.035	0.051
A1	0.000	0.152	0.000	0.006
В	1.397	1.803	0.055	0.071
b	0.356	0.559	0.014	0.022
С	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
е	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

SOT-23-5 Surface Mount Package

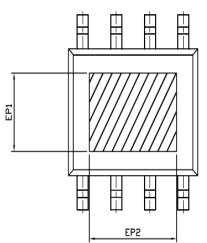

TDFN-8(2*2)

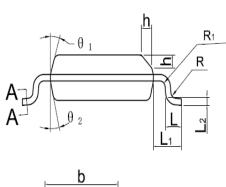
TOP VIEW

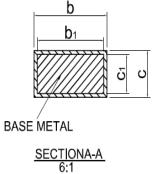
BOTTOM VIEW

, P Semi

SIDE VIEW


SYMBOL	MILLIMETER NZ :				
STIMBOL	MIN 105	NOM	MAX		
Α	0.700	0.750	0.800		
A1	0.000	0.020	0.050		
b	0.200	0.250	0.300		
A2	0.180	0.200	0.220		
D	1.900	2.000	2.100		
E	1.900	2.000	2.100		
D1	1.100	1.200	1.300		
E1	0.600	0.700	0.800		
е	0.450	0.500	0.550		
L	0.300	0.350	0.400		
F	0.250	0.300	0.350		
h	REF0.180				


LP4066-04


Apr.-2020

DIMENSIONS IN MUILLIMETERS

SYMBOL	MIN	NOM	MAX
Α	1,35	1,55	1,75
A ₁	0,00		0,10
A ₂	1,25	1,40	1,65
A ₃	0,50	0,60	0.70
р	0.39		0.49
b ₁	0.28		0.48
С	0.10	_	0.25
C ₁	0.10		0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E ₁	3.80	3.90	4.00
е	1	.27BSC	
L	0.45		1.00
Lı	1	.04REF	
L ₂	0	,25BSC	
R	0,07		
R₁	0.07		
h	0,3	0.4	0.5
	0°		8°
θ_{1}	11°	17°	19°
θ_{2}	11°	13°	15°
θ_3	15°	17°	19°
θ 4	11°	13°	15°
EP1	2.40		
EP2	3.30		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by LOWPOWER manufacturer:

Other Similar products are found below:

VN5R003HTR-E NCP1855FCCT1G FAN54063UCX LC05132C01NMTTTG ISL78714ANZ CM1104-EH CM1104-DBB CM1104-MBB

XC6801A421MR-G ISL95521BHRZ ISL95521BIRZ MP2639AGR-P S-82D1AAE-A8T2U7 S-82D1AAA-A8T2U7 S-8224ABA-I8T1U

MC33772CTC0AE BQ28Z610DRZR-R1 MCP73832-4ADI/MC MCP73832T-2DCIMC MCP73833T-AMIMF MCP73833T-AMI/UN

MCP73838-NVI/MF MCP73213-A6BI/MF MCP73831-2ACI/MC MCP73831T-2ATIMC MCP73832-2ACI/MC MCP73832T-3ACIMC

MCP73833T-FCI/MF MCP73853-IML BQ25895RTWR BQ29704DSER BQ78Z100DRZR ISL78610ANZ FAN5403UCX

NCP367DPMUECTBG FAN54015BUCX MAX8934BETI+ BQ24311DSGR BQ25100HYFPR BQ29707DSER MAX17048G+T10

BQ24130RHLR BQ25120AYFPR BQ29703DSER BQ771807DPJR BQ25120AYFPT MAX17710GB+T MAX14634EWC+

BQ25121AYFPR BD99954GW-E2