PA39 PANEL POWER METER

APPLICATION
The PA39 power meter is a mowing-coil meter with a built-in measuring transducer. It is destined to measure active or reactive power in a.c. power networks. The measured power is indicated by a magnetoelectric (moving-coil) measuring system.
These meters are delivered in following versions:

- for measuring the active power in single-phase systems,
- for measuring the active or reactive power in three-phase three-wire or four-wire symmetrically or asymmetrically loaded systems,
- with the zero graduation on the left side of the scale for measuring the unidirectional power flow,
- with the zero graduation in the middle of the scale for measuring the bidirectional power flow.

TECHNICAL DATA
Measuring
ranges acc. the series

Input voltage

Input current
Active power factor
Reactive power factor
Accuracy class
$1,1.2,1.5,2,2.5,3,4,5,6,7.5,8$, or the decimal multiplication of one of these numbers
$100 \sqrt{ } 3(x / 100 / \sqrt{ } 3), 100(x / 100)$, 133, 230, 280, 400, 500, 690 V
$1 A(x / 1 A)$ or $5 A(x / 5 A)$
$\cos \varphi: 1_{1 . .0 .5_{\text {ind }}}$
$\sin \varphi: 1 \ldots 0.5_{\text {ind }}$
1.5

Rated operating conditions:

- ambient temperature
- relative humidity
- frequency of the input quantities
- working position
- external magnetic field

Additional errors
acc. EN 60051-1 standard
Power consumption:

- voltage circuit
- current circuit

Protection Grade acc. to EN60529

- front protection grade: IP 52
- terminal protection: IP00

Housing material thermoplastic, self-extinguishing plastic (UL 94V-O)
Glass material glass (in standard) anti-reflective glass on request
Electromagnetic compatibility:

- emission acc. EN 61000-6-4 standard
- immunity acc. EN 61000-6-2 standard

The meter fulfils CE mark requirements.
Safety requirements acc. EN 61010-1:

- installation category
- level of pollution
- working voltage
in relation to the earth 660 V a.c.
Weight $650-750 \mathrm{~g}$
ACCESSORIES
We deliver with the meter:
- screw holders . \qquad 2 pcs

CHOICE OF MEASURING RANGE

1. Calculate the power from the formulas:

P = Un x Infor single-phase networks
$P=\sqrt{3} \times U_{n} \times I_{n}$ for three-phase networks where:
U_{n} - network rated voltage:

- for three-phase networks - phase-to-phase voltage,
- when connected through transformers-primary rated voltage.
I_{n} - rated current:
- 5 A or 1 A,
- when connected through transformers-primary rated voltage.

2. Round the calculated power value to the nearest value from the given sequence of numbers for the measuring range.
3. Example of measuring range choice.

Three-phase network; rated values of transformers: $15000 / 100 \mathrm{~V}$ and 400/5 A

$$
P=\sqrt{3} \times 15000 \mathrm{~V} \times 400 \mathrm{~A}=10,39 \mathrm{MW}(\mathrm{Mvar})
$$

Selected measuring range: 10 MW (Mvar)

EXTERNAL DIMENSIONS

Fig 1. External dimensions of PA39 meter.

Fig. 2. Fixing of meters PA39in the panel.

Included are two screw holders which should be fixed on arbitrary, opposite case corners

Single phase active power			A	$\frac{100}{\sqrt{3}}$	100	230	280	400															
3-phase 3-wire active power symmetrically loaded													3000	6000	10000	15000	20000	30000	40000	60000	110000	220000	400000
3-phase 3-wire active power asymmetrically loaded			B						O	400	500	690	100	100	100	100	100	100	100	100	100	100	100
3-phase 4-wire active power symmetrically loaded									133	230	280	400	3000	6000	10000	15000	20000	30000	40000	60000	110000	220000	400000
3-phase 4-wire active power asymmetrically loaded			E						230	400	500	690	100 $\sqrt{3}$	100N3	100N3	100 $\sqrt{3}$	100N3	100 $\sqrt{3}$	100N3	100N3	100 $\sqrt{3}$	100 $\sqrt{3}$	$100 \sqrt{3}$
3-phase 3-wire reactive power symmetrically loaded									30	400	500	690	3000	6000	10000	15000	20000	30000	40000	60000	110000	220000	400000
3-phase 3-wire reactive power asymmetrically loaded			F						230	400	500	6	100	100	100	100	100	100	100	100	100	100	100
3-phase 4-wire reactive power symmetrically loaded									133	230	280	400	3000	6000	10000	15000	20000	30000	40000	60000	10000	220000	000
3-phase 4-wire reactive power, asymmetrically loaded			H K						230	400	500	690	100 $\sqrt{3}$	100N3	100N3	100N3	100N3	100 $\sqrt{3}$	100N3	100N3	100N3	100 $\sqrt{3}$	$100 \sqrt{3}$
\ln / x	IN Code			Un Code																			
	$\mathrm{x}=5$	$\mathrm{x}=1$		T	U	A	V	W	B	C	D	E	F	G	H	1	K	L	M	N	P	R	S
1	-	A1	W	50	100	200	250	400	400	600	800	1.2	5	10	15	25	30	50	80	100	200	400	800
5; 5/x	B5	B1		250	500	1	1.2	2	2	3	4	6	25	50	60	120	150	250	400	500	1	2	4
10/x	C5	C1		500	1	2	2.5	4	4	6	8	12	50	100	150	250	300	500	800	1	2	4	8
15/x	D5	D1		800	1.5	3	4	6	8	10	12	15	80	150	250	400	500	800	1.2	1.5	2.5	5	12
20/x	E5	E1	$\begin{aligned} & \bar{\pi} \\ & \underset{x}{x} \\ & \underset{x}{n} \end{aligned}$	1.2	2	4	6	8	8	12	15	20	100	200	300	500	600	1	1.5	2	4	8	15
30/x	F5	F1		1.5	3	6	8	12	12	20	25	30	150	300	500	800	1	1.5	2	3	5	10	20
50/x	G5	G1							20	30	40	50	250	500	800	1.2	1.5	2.5	4	5	10	20	40
75/x	H5	H1							30	50	60	80	400	800	1.2	2	2.5	4	5	8	15	25	50
100/x	15	11							40	60	80	100	500	1	1.5	2.5	3	5	8	10	20	40	80
150/x	J5	J1							60	100	120	150	800	1.5	2.5	4	5	8	12	15	25	50	120
200/x	K5	K1							80	120	150	200	1	2	3	5	6	10	15	20	40	80	150
300/x	L5	L1							120	200	250	300	1.5	3	5	8	10	15	20	30	50	100	200
400/x	M5	M1							150	250	300	400	2	4	6	10	12	20	30	40	80	150	300
600/x	N5	N1							200	400	500	600	3	6	10	15	20	30	40	60	100	200	400
800/x	P5	P1							300	500	600	800	4	8	12	20	25	40	60	80	150	300	600
1000/x	R5	R1							400	600	800	1	5	10	15	25	30	50	80	100	200	400	800
1200/x	S5	S1							500	800	1	1.2	6	12	20	30	40	60	100	120	250	500	1000
1500/x	T5	T1							600	1	1.2	1.5	8	15	25	40	50	80	120	150	300	600	
2000/x	U5	U1							800	1.2	1.5	2	10	20	30	50	60	100	150	200	400	800	
3000/x	V5	V1	\sum_{i}^{∞}						1.2	2	2.5	3	15	30	50	80	100	150	200	300	600	1000	
4000/x	W5	W1							1.5	2.5	3	20	20	40	60	100	120	200	300	400	800		
6000/x	X5	X1							2	4	5	6	30	60	100	150	200	300	400	600	1000		
10000/x	Y5	Y1							4	6	8	10	50	100	150	250	300	500	800	1000			
20000/x	Z5	Z1							8	12	15	20	100	200	300	500	600	1000					

Table 3

Table 2	
Input voltage frequency fn (Hz)	Codes
50	$\mathbf{0}$
60	$\mathbf{1}$

OPERATING POSITIONS

Code	Position
A	$\mathrm{c} 1 \alpha=0^{\circ}$
B	$\mathrm{c} 2 \alpha=15^{\circ}$
C	$\mathrm{c} 2 \alpha=30^{\circ}$
D	$\mathrm{c} 2 \alpha=45^{\circ}$
E	$\mathrm{c} 2 \alpha=60^{\circ}$
F	$\mathrm{c} 2 \alpha=75^{\circ}$
0	$\mathrm{c} 3 \alpha=90^{\circ}$
H	$\mathrm{c} 4 \alpha=105^{\circ}$
I	$\mathrm{c} 4 \alpha=120^{\circ}$

ELECTRICAL CONNECTIONS

Active/reactive power mesurement in single phase AC network

Active power mesurement in 3-phase, 4-wire network balanced load

Reactive power mesurement in 3-phase, 4-wire network balanced load

Active/reactive power measurement in 3-phase, 4-wire network unbalanced load

Active power mesurement in 3-phase, 3-wire network balanced load

Reactive power mesurement in 3-phase, 3-wire network balanced load

Active/reactive power measurement in 3-phase, 3-wire network unbalanced load

${ }^{\text {1) }}$ 2) The ordering code is given by the manufacturer after agreement.
${ }^{2)}$ The number code is given acc. customer's agreement.

ORDERING WAY

In any order one must specify the name and the ordering code of the power meter using the tables: 1, 2, 3, and 4.

Order example: PA39-H-F-0-L5-0-0-00-8, means

H - Reactive PA39 power meter adapted to a three-phase four-wire symmetrically loaded network.
F - Network rated voltage: 3000 V (from table 3).
0 - Frequency of the input voltage: 50 Hz (from table 1).
L5 - Network rated current: 300 A (from table 3).
0 - Unidirectional power flow.
0 - Working position: C3, vertical (from table 2).
00 - Catalogue version.
8 - without additional requirements concerning acceptance tests.
This power meter is destined to co-operate with $\mathbf{3 0 0}$ A/5 A transformers and a $\mathbf{3 0 0 0} \mathrm{V} / \mathbf{1 0 0} / \sqrt{\mathbf{3}} \mathrm{V}$ voltage transformers.
Note: concerning casing protection grade IP. When ordering, please precise the required grade option: IP50 or IP65

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LUMEL manufacturer:
Other Similar products are found below :
$\underline{\text { ATS } 100} \underline{\text { ATS } 200} \underline{\text { ATS } 300} \underline{\text { ATS } 400}$ ATS $500 \underline{\text { B2 060100AA0100M0 B2 06010A0A0100M0 B2 060120AA01A2M0 B2 }}$ 06015A0A0100M0 B2 060160AA01A2M0 B2 0601A00A0100M0 B2 0601K00B0100M0 B2 060200AB01B1M0 B2 0602K50B0100M0 B2 06030A0A01A1M0 B2 06040A0A0100M0 B2 0604A00A0100M0 B2 06050A0A01A2M0 B2 0605A00A01A1M0 B2 0606A00A0100M0 B2 060800AB01B3M0 B3 15010A0A0100M0 B3 150200AD01A2M0 B3 15025A0A0100M0 B3 15050A0D01A2M0 B3 1505A00A01A1M0 B3 15060A0D0100M0 B4 0502K00B01B5M0 B4 05050A0D01A2M0 B5 075300AB01B1M0 B5 07575A0D01A2M0 B6 10010A0A0100M0 B6 100150AD0100M0 B6 10020A0A01A1M0 B6 10050A0D01A2M0 BA271NE4120000 BA271NE4160000 BA271NE4170000 BA391NE4050000 BE271NF4162000 BE271NF4170000 BE271NF4500000 BE391NF4122000 CA39 120000 EA12N C70100000000 EA12N C70200000000 EA12N E20700000000 EA12N E210000000000 EA12N E21200000000 EA12N E213000000000

