

XFM-5050-UV 4-chip Surface Mount UVC LED

Table of Contents

Binning Structure2
Ordering Information3
Optical and Electrical Characteristics 4
Mechanical Dimensions 7
Soldering Profile8
Product Shipping & Labeling Information9 Precautions for Use 10
History of Changes 11

Features

- Ultra-high power UVC LED: >250 mW output power at 275 nm
- Compact, cost effective 5050 package
- Designed to maximize irradiance in high flow applications
- Wide viewing angle of 130 $^\circ$
- Standard SMT Process
- RoHS and REACH compliant

Applications

- Water Purification
- Surface Disinfection
- Air Purification
- Medical Device Sterilization
- Appliance Sterilization
- Food & Beverage Preparation

XFM-5050-UV Binning Structure

XFM-5050-UV LEDs are tested for radiometric flux and wavelength at a drive current of 2.0 A (equivalent to 500 mA/chip), 20 ms single pulse at 25° C and placed into one of the following radiometric flux (FF) and wavelength (WWW) bins. The LEDs can also be driven at other drive currents, to achieve the correlated flux values listed in the table.

Radiometric Flux Bins

Flux Bin (FF)	Minimum Flux (mW)	Maximum Flux (mW) 2.0 A, 25º C	Correlated Minimum Flux (mW) at 25º C		
	2.0 A, 25º C		1.4 A (350 mA/chip)	2.6 A (650 mA/chip)	3.2 A (800 mA/chip)
FE	200	225	143	263	321
GA	225	250	161	296	362
GB	250	275	179	329	402
GC	275	300	196	361	442

Note 1: Product lifetime is a function of drive current. Sustained operation at absolute maximum current of 3.2 A will result in a reduction of device lifetime compared to typical forward drive currents (1.4 A-2.0 A). Actual device lifetimes will also depend on junction temperature. Contact Luminus for information on product lifetime.

Note 2: Correlated minimum flux values are for reference only. XFM-5050s are tested and binned only at the test current of 2.0 A.

Wavelength Bins

Wavelength Bin (WWW)	Minimum Wavelength (nm)	Maximum Wavelength (nm)
270	270	275
275	275	280
280	280	285

Note 1: Luminus maintains a + -6% tolerance on flux measurements and + -1 nm on wavelength measurements.

Note 2: Individual bins are not orderable. Please refer to product ordering information on page 3 for a list of ordering part numbers.

Part Number Nomenclature

XFM —	- 5050	- <uv> -</uv>	– <d130> –</d130>	- <ffwww-##></ffwww-##>
Product Family	Package Type	Color	Package Configuration	Bin kit
XFM: UVC Surface Mount Package	5050: 5.0 mm x 5.0 mm	UV	D: 4-chip version 130: 130° emission angle	Flux (FF) and Wavelength(WWW) bin kit code See ordering informaton

Ordering Part Numbers

The table below lists ordering part numbers available for XFM-5050-UV LEDs. The part number includes a bin kit, a group of flux and wavelength bins described in page 2, that are shippable for a given ordering part number. Individual flux or wavelength bins are not orderable. Flux bin listed is minimum bin shipped - higher bins may be included at Luminus' discretion.

Wavelength Bange Wavelength Bing		Radiometric Flux		Ordening Dout Number
wavelength kange	wavelength Bins	Bin Kit Flux Code	Min. Flux (mW)	Ordening Part Number
270-280	270,275	FE	200	XFM-5050-UV-D130-FE270-00
280-285	280	FE	200	XFM-5050-UV-D130-FE280-01
270-280	270,275	GA	225	XFM-5050-UV-D130-GA270-00
280-285	280	GA	225	XFM-5050-UV-D130-GA280-01

Optical and Electrical Characteristics

Parameter	Symbol	Typical	Unit
Test Current	I _f	2.0	А
Minimum Forward Voltage	V _{f-min}	5.0	V
Typical Forward Voltage	V _{f-typ}	6.75	V
Maximum Forward Voltage	V _{f-max}	8.0	V
FWHM	Δλ	12	nm
Viewing Angle	20 _{1/2}	130	0
Thermal Resistance (junction-solder point)	R _{th}	1.8	°C/W

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Forward Current	 f-max	3.2	А
Junction Temperature	T _i	95	°C

Note 1: Ratings are based on operation at a constant junction temperature of $T_i = 25 \text{ °C}$. Test conditions: 2.0 A, 20 ms pulse at 25 °C.

Note 2: XFM-5050-UV LEDs are designed for operation up to an absolute maximum forward drive current as specified above. Product lifetime data is specified at typical forward drive currents. Sustained operation at absolute maximum currents will result in a reduction of device lifetime compared to typical forward drive currents. Actual device lifetimes will also depend on junction temperature.

Note 3: Caution must be taken not to stare at the radiation emitted from UV LEDs.

XFM-5050-UV

Product Datasheet - Preliminary

Optical & Electrical Characteristics

Peak Wavelength Shift vs. Forward Current $\lambda_p = \lambda_p(I_f) - \lambda_p$ (2.0 A), 20 ms pulse, $T_i = 25^{\circ}C$

Relative Power vs. Junction Temperature

$\varphi/\varphi_{(25^{\circ}C)}$, 20 ms pulse, 2.0 A

Forward Voltage Shift vs. Junction Temperature

 $\Delta V_{f} = V_{f}(T_{i}) - V f_{f} 25^{\circ}C), 20 \text{ ms pulse}, I_{f} = 2.0 \text{ A}$

Luminus Devices, Inc. • T 408.708.7000 • www.luminus.com 1145 Sonora Court, Sunnyvale, CA 94086 USA

Typical Spectrum

Radiation Pattern-TBA

Mechanical Dimensions

Recommended Solder Pad & Stencil Pattern

Soldering Profile

Profile Setting	Pb-Free Profile
Average Ramp-up Rate (Ts _{max} , T _p)	1 °C/sec
Preheat Temperature Min (Ts _{min})	100-150 °C
Preheat Temperature Max (Ts _{max})	180-200 °C
Preheat Time (ts _{min} to ts _{max})	60-120 sec
Liquidus Temperature (T_)	217 °C
Time Maintained Above $T_{L}(t_{L})$	50-80 sec
Peak / Classification Temperature (T _p)	260 °C
Time within 5°C of Actual Peak Temp (t_p)	Max 10 sec
Ramp-Down Rate	2-3 °C /sec
25°C to Peak Temperature time	4 mins

Luminus recommends that users follow the recommended soldering profile provided by the manufacturer of the solder paste used. Note that this general guideline may not apply to all PCB designs and configurations.

Product Shipping & Labeling Information-TBA

All XFM-5050 products are packaged and labeled with their respective bin as outlined in the tables on pages 2 & 3.

XFM-5050-UV Label Information

Precautions for storage, handling and use of UV LEDs

1. UV Light

XFM-5050 LEDs are short wavelength, deep UV LEDs. During operation, the LED emits high intensity UVC radiation, which is harmful to skin and eyes. UV light is also hazardous to skin and may cause cancer. Avoid exposure to deep UV light when LED is operational.

2. Static Electricity (ESD)

While XFM-5050 LEDs have built-in Zener protection diodes, they are particularly sensitive to ESD (Electrostatic Discharge). Static electricity and surge voltages seriously damage UV LEDs and can result in complete failure of the device. Precautions must be taken against ESD when handling or operating these devices.

3. Operating Conditions

In order to ensure the correct functioning of these LEDs, compliance to maximum allowed specifications is important. UV LEDs are particularly sensitive to drive currents that exceed the max operating specifications and may be damaged by such drive currents. The use of current regulated drive circuits is strongly recommended when operating these devices. Customers should also provide adequate thermal management to ensure LEDs do not exceed maximum recommended temperatures. Operating LEDs at temperatures in excess of specification will result in damage and possibly complete failure of the device.

History of Changes

Rev	Date	Description of Change
Α	11/2020	Initial Release
В	11/2020	Binning current corrected to 2.0 A

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - SMD category:

Click to view products by Luminus Devices manufacturer:

Other Similar products are found below :

LTST-C19GD2WT LTST-N683GBEW LTW-170ZDC LTW-M140SZS40 598-8110-100F 598-8170-100F 598-8610-202F 67-22VRVGC/TR8 AAAF5060QBFSEEZGS HLMP-6305-L0011 ALMD-LB36-SV002 APT1608QGW 15-21UYC/S530-A3/TR8 EASV1803BA0 LG M67K-H1J2-24-0-2-R18-Z LS A676-P2S1-1 SML310BATT86 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SML-LXR851SIUPGUBC LT1ED53A FAT801-S AM27ZGC03 APB3025SGNC APFA3010SURKCGKQBDC APHK1608VGCA APT2012QGW CLX6D-FKB-CN1R1H1BB7D3D3 LTST-C250KGKT LTW-020ZDCG LTW-21TS5 LTW-220DS5 JANTXM19500/521-02 UYGT801-S LO T67F-V1AB-24-1 YGFR411-H 598-8330-117F SML-LX0402IC-TR CMDA20AYAA7D1S CMDA16AYDR7A1X 339-1SURSYGW/S530-A2 598-8040-100F 598-8070-100F 598-8140-100F 598-8610-200F EAPL3527GA5 67-11/BHC-M1N2B8Y/2A0 SML-LXL1209SYC/ATR EASV3020YGA0