Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

FEATURES

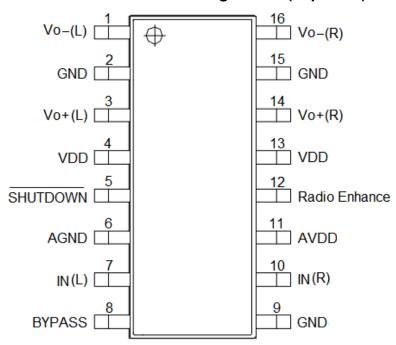
- 3.3W/CH Into 4Ω from 5.5V power supply at THD+N = 10% (Typ.).
- 2.2V~5.5V Power supply.
- Low shutdown Current.
- Low Quiescent Current.
- Minimum external components.
- No output filter required for inductive loads.
- Short-Circuit Protection and automatic recovery.
- Over-Heat Protection and automatic recovery.
- Low noise during turn-on and turn-off transitions.
- Radio enhance function.
- Lead free and green package available. (RoHS Compliant)
- SOP16 pin packaging available.

APPLICATION

- Portable electronic devices
- Mobile phones, PDAs
- DVD/CD Players, TFT LCD TVs/Monitors
- USB Audio, Audio System
- iPod dock.

GENERAL DESCRIPTION

The LY8212 is a high efficiency, high quality 3.3W stereo class D audio power amplifier which can operate radio enhance function to get good performance in Radio mode. It is a low noise, filterless PWM architecture eliminates the output filter, reducing external component count, system cost (BOM cost), and simplify design.


The device is designed to meet of Multimedia application includes mini speaker and other portable electronic devices.

The LY8212 is a single 5.5V power supply, it is capable of driving 4Ω speaker load at a continuous average output of 3.3W/CH with 10% THD+N. The device also features an internal thermal shutdown protection and output pin short circuit (short to output pin, short to ground and short to VDD) protection prevent the device from damage during fault conditions.

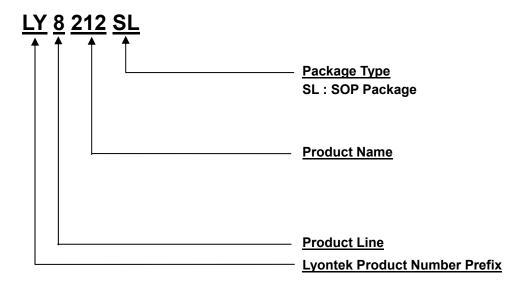
The LY8212 is easily to be used in various portable applications and products. such as FM speaker, MP3, MP4 and MP5 media players.

■ PIN CONFIGURATION

LY8212 SOP16 Pin Configuration (Top View)

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan


Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

■ PIN DESCRIPTION

SYMBOL	Pin No.	DESCRIPTION	
O I MIDOL	SOP16	- DESCINITION	
Vo-(L)	1	Negative(-) BTL output of left channel.	
GND	2/9/15	Ground	
Vo+(L)	3	Positive(+) BTL output of left channel.	
Vdd	4/13	Power supply of left and right channel.	
SDB	5	Shutdown control pin. (Low enable the device).	
AGND	6	Analog GND of left and right channel.	
INL	7	Input of left channel.	
Bypass	8	Bypass pin.	
INR	10	Input of right channel.	
AVdd	11	Analog Power supply of left and right channel.	
Radio Enhance	12	Radio enhance pin. (High enable the function).	
Vo+(R)	14	Positive(+) BTL output of right channel.	
Vo-(R)	16	Negative(-) BTL output of right channel.	

ORDERING INFORMATION

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

TYPICAL APPLICATION CIRCUIT

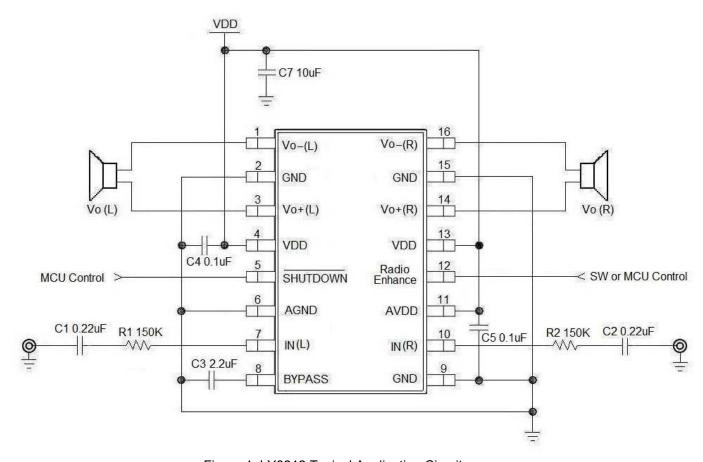


Figure 1. LY8212 Typical Application Circuit

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power supply voltage range	V _{DD}	6.0	V
Operating temperature	TA	-40 to 85 (I grade)	$^{\circ}\!\mathbb{C}$
Input voltage range	Vı	-0.3V to V _{DD} +0.3V	V
Storage temperature	Тѕтс	-65 to 150	$^{\circ}$ C
Power dissipation	Po	Internally Limited	W
ESD susceptibility	VESD	2000	V
Junction temperature	Тјмах	150	$^{\circ}\!\mathbb{C}$
Soldering temperature (under 10 sec)	Tsolder	260	$^{\circ}\mathbb{C}$

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

■ ELECTRICAL CHARACTERISTICS (TA = 25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Power supply voltage	VDD	-	2.2	-	5.5	V
Quiescent current		V _{DD} = 5.5V, No Load	-	-	9	
(Radio enhance pin=low)	IQ	V _{DD} = 3.6V, No Load	-	-	6	mA
(Nadio chilanee pin-low)		V _{DD} = 2.5V, No Load	-	-	3	
Shutdown current	Isp	$V_{SHUTDOWN} \leq 0.8V$,	-	0.1	-	μA
Shalaowh carrent		$V_{DD} = 2.5V \text{ to } 5.5V$				
Shutdown voltage input high	Vsdih	-	1.2	-	-	V
Shutdown voltage input low	VSDIL	-	-	-	0.4	V
Output offset voltage	Vos	$V_1 = 0 \text{ V}, \text{ Av} = 2 \text{ V/V},$	_	_	25	mV
Output offset voltage	VOS	$V_{DD} = 2.5 \text{ V to } 5.5 \text{ V}$	_	_	2	1117
Thermal shutdown temperature	TsD		-	150	-	$^{\circ}\mathbb{C}$

■ OPERATING CHARACTERISTICS (TA = 25°C, Gain = 2 V/V)

PARAMETER	SYMBOL	TEST	CONDITION	١	MIN.	TYP.	MAX.	UNIT
		RL = 4 Ω , f = 1kHz,	THD+N=10%	VDD=5.5V	-	3.3	-	-
				VDD=5.0V	-	2.7	-	
				V _{DD} =3.6V	-	1.4	-	
				V _{DD} =5.5V		2.7		
				VDD=5.0V	-	2.2	-	
Output power / channel	Po			VDD=3.6V	-	1.1	-	w
Output power / channel	F0			VDD=5.5V		2.0		VV
			THD+N=10%	VDD=5.0V	-	1.6	-	
		$R_L = 8\Omega$,		VDD=3.6V	-	8.0	-	- - -
		f = 1kHz,		VDD=5.5V		1.6		
			THD+N=1%	VDD=5.0V	-	1.3	-	
				VDD=3.6V	-	0.6	-	
Power supply rejection ratio	PSRR	Inputs ac-ground with Ci = 0.22µF		VDD=3.6V	-	-55	-	dB
Crosstalk	Cs	$V_{DD} = 3.6 \text{ V}, \text{ RL} = 8\Omega$ f=1kHz,		VDD=3.6V	-	88	-	dB
Signal-to-noise ratio	SNR			V _{DD} =5.0V	-	80	-	dB
Output voltage noise	Vn	V _{DD} = 3.6V, f = 20Hz to 2	20kHz,	No weighting	-	160	-	- uV _{RMS}
Output voltage hoise	VII	Inputs ac-grounded with Ci = 0.22µF		A weighting	-	90	-	UVKIVIS
	Zı	V _{DD} = 5.0V,C _{bypass} = 2.2µF		-	265	-		
Start-up time from shutdown		V _{DD} = 3.6V,C _{bypass} = 2.2µF		-	215	-	ms	
		V _{DD} = 2.5V,C _{bypass} = 2.2µF		-	210	-		
Efficiency	η	f=1kHz, RL=8Ω, THD=10%			-	82	-	%
Total Gain (*)	Gv	V_{DD} = 2.5V to 5.5V R_L = 8Ω			[150K	Ω / (5ΚΩ+	Ri)] x4	V/V

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

LY8212
3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

Rev. 1.1

APPLICATION INFORMATION

Input Resistors (Ri) and Gain

The LY8212 have two internal amplifier stages. The pre-amplifier gain is externally configurable, while the total gain is internally fixed. The closed-loop gain of the pre-amplifier gain is set by selecting the Rf to Ri while the total gain is fixed at 4x. So the input resistors (Ri) set the gain of the amplifier according to the equation.

Pre-Amplifier Gain = (Rf / Ri) x 2

Total Gain = $[(Rf/Ri) \times 2] \times 2$

 $A_{VD} = 20 \times \log [4 \times (Rf/Ri)]$

The resistor matching is very important in the amplifiers. Balance of the output on the reference voltage depends on matched ratio of the resistors. CMRR, PSRR, and cancellation of the second harmonic distortion if resistor mismatch occurs. Therefore, it is recommended to use 1% tolerance resistors or better to keep the performance optimized. Matching is more important than overall tolerance.

Resistor arrays with 1% matching can be used with a tolerance greater than 1%. Place the input resistors very close to the LY8212 to limit noise injection on the high-impedance nodes. For optimal performance the gain should be set to 4 V/V or lower. Lower gain allows the LY8212 to operate at its best,

For example

Table 1. Typical Total Gain and AvD Values

Table 11 Typical Folding Call and The Fallice					
Rf (KΩ)	150	150	150	150	150
Ri (KΩ)	150	75	50	25	15
Pre AMP. Gain	2	4	6	12	20
Total Gain	4	8	12	24	40
Avd (db)	12.04	18.06	21.58	27.60	32.04

Input Capacitors (Ci)

The LY8212 using single-end source, So the input coupling capacitors are required. The input capacitors and input resistors form a high-pass filter with the corner frequency(fc), determined in the equation.

 $fc = 1 / (2\pi Ri Ci)$

The value of the input capacitor is important to consider as it directly affects the bass (low frequency) performance of the circuit. Speakers in wireless phones cannot usually respond well to low frequencies, so the corner frequency can be set to block low frequencies in this application. Equation is reconfigured to solve for the input coupling capacitance.

 $Ci = 1 / (2\pi Ri fc)$

If the corner frequency is within the audio band, the capacitors should have a tolerance of $\pm 10\%$ or better, because any mismatch in capacitance causes an impedance mismatch at the corner frequency and below.

IY8212

Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

For example

In the table 2 shows the external components. Rin in connect with Cin to create a high-pass filter.

Table 2. Typical Component Values

	7:	
Reference	Description	Note
Ri	150ΚΩ	1% tolerance resistors
Ci	0.22uF	80%/–20%

 $Ci = 1 / (2\pi Ri fc)$

Ci = 1 / $(2\pi \times 150 \text{K}\Omega \times 4.8 \text{Hz}) = 0.221 \text{uF}$, Use 0.22uF

Decoupling Capacitor

The LY8212 is a high-performance class-D audio amplifier that requires adequate power supply decoupling to ensure the efficiency is high and total harmonic distortion (THD) is low. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 10.0uF, placed as close as possible to the device VDD lead works best. Placing 0.1uF decoupling capacitor close to the LY8212 is very important for the efficiency of the class-D amplifier, because any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency. For filtering lower-frequency noise signals, a 10.0uF or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.

Over-Heat Protection

The LY8212 has a built-in over-heat protection circuit, it will turn off all power output when the chip temperature over 150° C, the chip will return to normal operation automatically after the temperature cool down to 120° C.

Radio Enhance

The LY8212 has a built-in radio enhance function. When radio signal is poor. Enable (active to high) the radio enhance pin will improve the signal obviously. But enable the pin will reduce LY8212 efficiency. Therefore recommend if radio function is not to use. Disable (active to low) the radio enhance pin is very important.

■PCB LAYOUT

All the external components must place very close to the LY8212. The input resistors need to be very close to the LY8212 input pins so noise does not couple on the high impedance nodes between the input resistors and the input amplifier of the LY8212. Then place the decoupling capacitor Cs, close to the LY8212 is important for the efficiency of the class-D amplifier. Any resistance or inductance in the trace between the device and the capacitor can cause a loss in efficiency.

Making the high current traces going to VDD, GND, Vo+ and Vo- pins of the LY8212 should be as wide as possible to minimize trace resistance. If these traces are too thin, the LY8212's performance and output power will decrease. The input traces do not need to be wide, but do need to run side-by-side to enable common-mode noise cancellation.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

Rev. 1.1

3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

■ DEMO BOARD INFORMATION

Demo Board Application Circuit

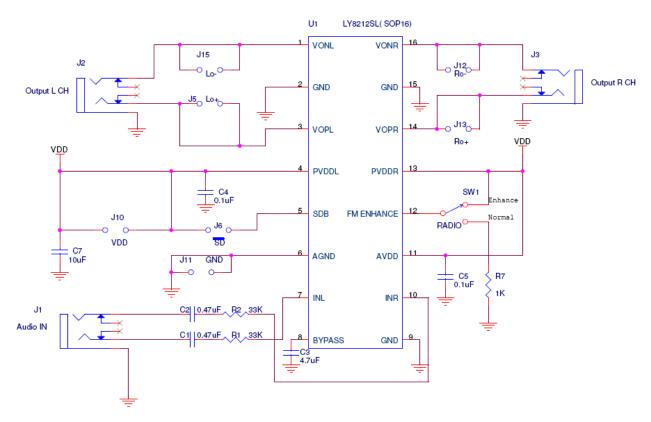


Figure 2 Demo Board Application Circuit

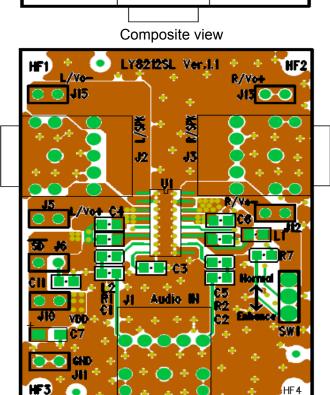
Demo Board BOM List

LY8212 V1.1 BOM List

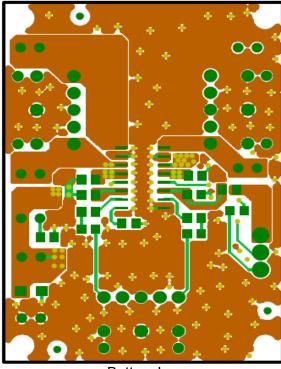
No.	Description	Reference	Note
1	Resistor, 33KΩ	R1,R2	1/16W,1%
2	Capacitor, 0.1uF	C4,C5	80%/-20%, nonpolarized
3	Capacitor, 0.47uF	C1,C2	80%/-20%, nonpolarized
4	Capacitor, 2.2uF	C3	80%/-20%, nonpolarized
5	Capacitor, 10.0uF	C7	80%/-20%, 6.3 V
6	IC	U1	LY8212SL, SOP16
7	SW	SW1	Toggle Switch 3P2 (ON-ON)
8	1*2 Pin Header	J6	Open →shutdown

Lyontek Inc. reserves the rights to change the specifications and products without notice.

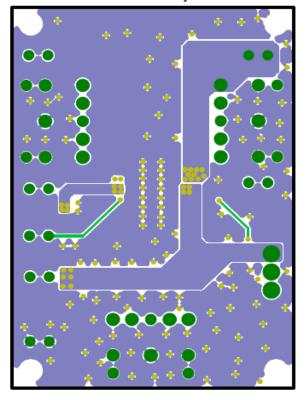
5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan



Rev. 1.1


3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance

Demo Board Artwork

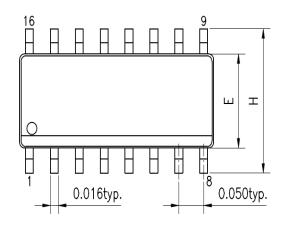

Top Silkscreen

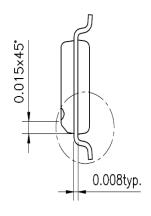
Top Layer

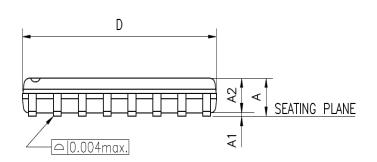
Bottom Layer

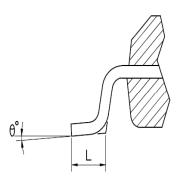
Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan




Rev. 1.1


3.3W/CH Stereo Class D Audio Power Amplifier with Radio Enhance


■PACKAGE OUTLINE DIMENSION

SOP 16 Pin Package Outline Dimension

	STAN	DARD
SYMBOLS	MIN.	MAX.
А	0.053	0.069
A1	0.004	0.010
A2	0.049	0.065
D	0.386	0.394
E	0.150	0.157
Н	0.228	0.244
L	0.016	0.050
θ°	0	8

UNIT: INCH

Lyontek Inc. reserves the rights to change the specifications and products without notice.

5F, No. 2, Industry E . Rd. IX, Science-Based Industrial Park, Hsinchu 300, Taiwan

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by Lyontek manufacturer:

Other Similar products are found below:

LV3313PM-TLM-E LV47002P-E AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500 TDA7563AH TDA7850H TS2012EIJT NCP2809BMUTXG NJW1157BFC2 IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13 TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX BD37532FV-E2 BD5638NUX-TR BD37543FS-E2 BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 TAS5766MRMTR TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 TFA9879HN/N1,118 AS3410-EQFP-500 FDA4100LV TPA3140D2PWP BD3812F-E2 MAX98306ETD+T TS4994EIJT NCP2820FCT1G NCP4894FCT1G NCP2823AFCT2G NCS2211MNTXG CPA2233CQ16-A1