

Description

The MT2011 is a 4.5-20V input, 2A single-cell synchronous Li-Ion battery switching charger, suitable for portable application. The MT2011 integrates а synchronous PWM controller, 20V rating power MOSFETs, current sense resistor, high-accuracy current and voltage regulation, and charge termination, into a compact 8-pin SOP_EP package.

Features

- 1.5MHz Synchronous Switching Charger with Integrated Power FETs
- Up to 93% Efficiency
- 20V Input Rating with 6.7V OVP
- Programmable (2A Max) Charge Current
- Built-in Charge Current Soft Start
- Built-in Reverse Current Blocking Diode
- Built-in Charge Current Sense Resistor
- Output Short Circuit Protection
- Over Temperature Protection
- Pb-Free(ROHS compliant)
- Available in a SOP8_EP Package

Applications

- Tablet PC, Ebook and Netbook
- Handheld Portable Media Products
- Power Bank

Typical Application

Ordering Information

Part No.	Marking	Temp. Range	Package	Remark	MOQ
MT2011XSPR	MT2011 YWWXX X	-40℃ ~85℃	SOP8L_EP	VBAT_REG=4.2V	2500/Tape & Reel
MT2011BSPR	MT2011 YWWXX B	-40℃ ~85℃	SOP8L_EP	VBAT_REG=4.35V	2500/Tape & Reel

Note: Y:Year, WW:Week, XX:Control Code

Pin Configuration

Pin Description

Pin NO.	Pin Name	Description				
1	VCC	5V linear regulator output. B	5V linear regulator output. Bypass a 2.2uF ceramic capacitor from VCC to GND.			
2	BAT	Battery connection. Connec with a 20uF capacitor.	t to the positive terminal of th	e battery. Bypass BAT to GND		
3	BS	High Side MOSFET Gate D SW to supply the gate drive	river Supply. Connect a 0.1ul for the high side MOSFETs.	F ceramic capacitor from BS to		
4	SW	Switching node. Connect SV	V to the external inductor.			
5	VIN	IC power supply of internal bias and power devices. Bypass 20uF MLCC ceramic capacitor from VIN to GND.				
6	TS	Battery Pack NTC Monitor. Connect TS to the center tap of a resistor divider from VCC to GND. Pull TS to GND and disable charge function.				
7	ISET	Charge Current Programming Input. Connect a resistor R _{ISET} from ISET to GND to program the charge current. The charge current is programmable from 0.5A to 2A.				
8	STAT	Charge Status Open Drain Output. STAT is pulled low when a charge cycle starts and remains low while charging. STAT is high impedance when the charging terminates and when no supply exists. STAT is blinking when IC detect fault conditions.				
		Charge complete	LOW Charge in progress	Fault		
EP	GND	The exposed thermal pad and the IC ground pin.				

Absolute Maximum Rating (Reference to GND) (Note1)

VIN, STAT to GND0.3V to 20V	Junction temperature range 150°C
BS to GND0.3V to 26V	Storage temperature range55 ${\mathfrak C}$ to 150 ${\mathfrak C}$
SW to GND2 to 20V	Lead Temperature 260°C
VCC, ISET, TS, BAT to GND0.3V to 6V	ESD Classification Class 2

Recommended Operating Conditions (Note2)

Input Voltage (V_{IN}) 4.5V to 6.5V	Ambient Temperature Range40 $^{\circ}$ to 85 $^{\circ}$
Junction temperature range 135°C	

Thermal Information (Note3, 4)

Maximum Power Dissipation (TA=25°C)2.15W	Thermal resistance θ_{JA}
	Thermal resistance θ _{JC} 13℃/W

Note1: Stress exceeding those listed "Absolute Maximum Ratings" may damage the device.

Note2: The device is not guaranteed to function outside of the recommended operating conditions.

Note3: Measured on JESD51-7, 4-Layer PCB.

Note4: The maximum allowable power dissipation is a function of the maximum junction temperature T_{J_MAX} , the junction to ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D_MAX} = (T_{J_MAX} - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.

Electrical Characteristics (Note1)

Unless otherwise noted, all parameter limits are established over the recommended operating conditions:

 V_{IN} =5V, typical values are at T_A = 25°C, with respect to GND (unless otherwise note d)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT VOL	TAGE					
V _{IN}	Supply Operating Range		4.5		6.5	V
Vuvlo	Under-voltage lockout threshold	Measure on VIN 0V→4V		3.3		V
VUVLO_HYS	Hysteresis on UVLO	Measure on VIN 4V→0V		300		mV
Vovp	Over-Voltage Rising	VIN rising 5V → 7V	6.55	6.75	6.95	V
VOVP_HYS	Hysteresis on OVP	VIN falling 7V → 5V		100		mV
AUTOMAT	AUTOMATIC SLEEP COMPARATOR (REVERSE DISCHARGING PROTECTION)					
VSLEEP	SLEEP mode threshold	VIN – VBAT falling		100		mV
VSLEEP_HYS	Hysteresis	VIN – VBAT rising		200		mV
QUIESCEN	QUIESCENT CURRENTS					
Іват	Battery discharge current	Pull TS to GND			25	μA
lac	Adapter supply current	VIN > VUVLO, VIN > VBAT, VBAT>V _{BAT_REG} , Charge disabled		1.2	2.0	mA

Electrical Characteristics (continued)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
CHARGE	VOLTAGE REGULATION					
VBAT_REG	BAT regulation voltage	$\begin{array}{l} MT2011X, \text{ measured on BAT} \\ 0^{\circ}C \leq T_{A} \leq +70^{\circ}C \end{array}$	4.158	4.200	4.242	V
		MT2011B, measured on BAT 0℃ $\leq T_A \leq +70$ ℃	4.306	4.350	4393	V
VRCHG	Recharge Threshold, below regulation voltage limit	1 cell, measured on BAT VBAT_REG-VBAT		100		mV
VLOWV	Trickle Charge to fast charge transition threshold	measured on BAT		2.9		v
Vov_bat	BAT Over-voltage Threshold	As percentage of VBAT_REG		104%		
CHARGE	CURRENT REGULATION					
I _{OUT}	Charge Current Limit	$V_{BAT(REG)} > V_{BAT} > V_{LOWV};$ Iout = Kiset /Riset : Riset = 40k\Omega to 200k\Omega	0.5		2	A
KISET	Fast charge current factor	RISET = KISET /IOUT; 0.5A <i<sub>OUT< 2A</i<sub>		100		A·kΩ
%TRICHG	Trickle Charge Current	VBAT < VLOWV		10		%Іоυт
%term	Termination Current	VBAT > VRCHG		10		%lout
THERMIS	TOR COMPARATOR					
VCOLD	Cold Temperature, TS pin Voltage Rising Threshold	Charger suspends charge. As percentage to Vcc Hysteresis 0.4%	70.5%	73.5%	76.5%	
Vнот	Hot Temperature TS pin voltage rising Threshold	As percentage to Vcc Hysteresis 2.5%		47.2%		
Voff	Charging Disable Threshold TS pin voltage falling edge	Hysteresis 0.15V			0.15	V
INTERNAL	L THERMAL REGULATION					
TJ_REG	Temperature Regulation Limit	Charging		125		ĉ
T _{J(OFF)}	Thermal Shutdown Temperature			160		c
T _{J(OFF-HYS)}	Thermal Shutdown Hysteresis			20		ĉ
INTERNAL	L PWM Driver	I	ļ			<u> </u>
fsw	PWM Switching Frequency		1200	1500	1700	kHz
IOCP_HSFET	Peak Current limit	Measure on High Side FET		4		А
Rds_HI		High Side MOSFET On Resistance		150		mΩ
Rds_lo		Low Side MOSFET On Resistance		75		mΩ
VCC REG	ULATOR					
VCC_REG	V _{CC} regulator voltage	Vin > 6 V,	4.0	5.0	5.5	V
Ivcc_lim	V _{CC} current limit	Vcc = 0 V		50		mA

Functional Block Diagram

Typical Performance Characteristics

VIN = 5V, R_{ISET} =50k Ω , Typical Application Circuit Figure 1, T_A = +25 $^{\circ}$ C, unless otherwise noted.

Typical Performance Characteristics

VIN = 5V, R_{ISET} =50k Ω , Typical Application Circuit Figure 1, T_A = +25°C, unless otherwise noted

Typical Application Circuit

MT2011 Typical Application Circuit, ICHG=2A

Detailed Description

The MT2011 family is an integrated charger optimized for charging 1-cell Li-ion or Li-polymer batteries. It charges a battery with constant current (CC) and constant voltage (CV) profile. The typical charge profile is illustrated in below figure.

MT2011 Typical Charge Profile

Battery Charge Current Regulation

The charge current up to 2A is programmed by a resistor R_{ISET} from ISET to ground. The charge current is calculated by the following equation:

 $I_{CHG} = \frac{K_{ISET}}{R_{ISET}} = \frac{100 \text{ A} \cdot k\Omega}{R_{ISET}}$

The valid resistor range is $40k\Omega$ to $200k\Omega$ (See Table 1.) Under high ambient temperature, the charge current will be fold back to keep IC junction temperature not exceeding +125°C.

R _{ISET} (kΩ)	Charge Current (A)
50	2.0
66.7	1.5
100	1.0
200	0.5

Table 1. Charge Current Settings

The Thermistor Input TS

The MT2011 continuously monitors battery temperature by measuring the voltage between the TS pin and GND. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop this voltage. The MT2011 compares this voltage against its internal thresholds to determine if charging is

allowed. To initiate a charge cycle, the battery temperature must be within the VCOLD to VHOT thresholds. If battery temperature is outside of this range, the MT2011 suspends charge and waits until the battery temperature is within the VCOLD to VHOT range. During the charge cycle the battery temperature must be within the VCOLD to VHOT threshold.

Thermistor Input TS Pin Threshold

Refer to MT2011 typical operating circuit. RTHHOT is the expected thermistor resistance at the programmed hot threshold, and RTHCOLD is the expected thermistor resistance at the programmed cold threshold. The values of R_{TS1} and R_{TS2} can be determined by using below equations.

$$R_{TS2} = \frac{V_{CC} \times RTH_{COLD} \times RTH_{HOT} \times \left(\frac{1}{V_{COLD}} - \frac{1}{V_{HOT}}\right)}{RTH_{HOT} \times \left(\frac{V_{CC}}{V_{HOT}} - 1\right) - RTH_{COLD} \times \left(\frac{V_{CC}}{V_{COLD}} - 1\right)}$$

$$R_{TS1} = \frac{\frac{V_{CC}}{V_{COLD}} - 1}{\frac{1}{R_{TS2}} + \frac{1}{RTH_{COLD}}}$$

Where V_{COLD} = 0.735 X V_{CC} and V_{HOT} = 0.447 X V_{CC}

Charge Current Soft Start

The MT2011 soft starts the charge current to ensure no overshoot or stress on the output capacitors or the power converter.

Battery Trickle Charge Current Regulation

During power-up, if the battery voltage is below the VLOWV threshold, the MT2011 only applies the trickle charge current into the battery. This trickle charge feature is intended to revive deeply discharged cells. If the V_{LOWV} threshold is not reached within 30 minutes of initiating trickle charge, the charger is turned off, and STAT pin blinks to indicate a FAULT condition.

For MT2011 series, the trickle charge current is set as 10% of the full charge current.

Charge Termination

The MT2011 monitor the charge current during the battery voltage regulation phase. Charge termination is set when the battery voltage is higher than recharge threshold V_{RCH} and the charge current is less than 10% of the full charge current.

Recharge

A new charge cycle is initiated when one of the following conditions occurs:

- The battery voltage falls below the recharge threshold
- Input supply V_{IN} power-on-reset (POR) event occurs
- TS pin is toggled below 0.15V (disable charging) and above 0.3V (enable charging)

PCB Layout Consideration

For the best efficiency and minimum noise problem, Place C_{IN} , C6, C7, C2, L, R_{ISET} , R3 and R4 close to the IC. Maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable. C_{IN} must be close to Pins IN and GND. The loop area formed by C_{IN} and GND must be minimized. The PCB copper area associated with SW pin must be minimized to avoid the potential noise problem.

PACKAGING INFORMATION

SOP_8L (EP) PACKAGE OUTLINE DIMENSONS

	MILLIME	ETERS	INCH	ES		
STIMBULS	MIN.	MAX.	MIN.	MIN.		
А	1.35	1.75	0.053	0.069		
A1	0.00	0.25	0.000	0.010		
D	4.90		0.1	0.193		
E1	3.90		0.153			
D1	3.30		0.130			
E2	2.40		0.095			
E	5.80	6.20	0.228	0.244		
L	0.40	1.27	0.016	0.050		
b	0.31	0.51	0.012	0.020		
е	1.27		0.0	50		

Carrier Tape & Reel Dimensions

1. Orientation / Carrier Tape Information :

r ocanig anocaon

2. Rokreel Information :

3. Dimension Details :

РКG Туре	А	В	С	D	E	F	Q'ty/Reel
SOP 8L 150 mils	4.0 mm	1.5 mm	12.0 mm	8.0 mm	13 inches	13.0 mm	2,500

Reflow Profile

Classification of Reflow Profile

Reflow Profile	Green Assembly		
Average Ramp-Up Rate (Ts _{min} to Tp)	1~2°C/second		
Preheat			
-Temperature Min(Ts _{min})	150°C		
-Temperature Max(Ts _{max})	200°C		
-Time(ts _{min} to ts ts _{max})	60~180 seconds		
Time maintained above:	217°C		
-Temperature(T _L)	217 C		
-Time(t _L)	40~50 Seconds		
Peak Temperature(Tp)	250 +0/-5 ℃		
Time within 5°C of actual Peak Temperature(tp)	15 seconds max.		
Ramp-Down Rate	3°C/second		
Time 25℃ to Peak Temperature	8 minutes max.		

Note: For all temperature information, please refer to topside of the package, measured on the package body surface.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by M3Tek manufacturer:

Other Similar products are found below :

MP2602DQ-LF-P MP26053DQ-LF-Z MP2611GL-P NCP347MTAHTBG LM3658SD-AEV/NOPB MP2607DL-LF-P MP26121DQ-LF-P MP26123DR-LF-P MP2633GR-P MP2637GR-P BQ24212EVM-678 NCP1855FCCT1G MP2636GR-P FAN54063UCX MAX14680EWC+T MAX14634EWC+T DS2745U+T&R MAX14578EETE+T DS2781EVKIT+ DS2781E+T&R MP2605DQ-LF-P DS2710G+T&R MAX17040G+T MAX14525ETA+T MP2615GQ-P MAX14578EEWC+T LC05132C01NMTTTG MAX8971EWP+T MAX14630EZK+T MAX1873TEEE+T PSC5415A AUR9811DGD SN2040DSQR DS2715BZ+T&R MAX1508ZETA+T MAX14921ECS+T MAX77301EWA+T BD8668GW-E2 MAX16024PTBS+T DS2715Z+T&R MAX16024LTBZ18+T DS2782E+T&R DS2782G+T&R MAX1908ETI+T ISL95522IRZ ISL95522HRZ ARD00558 NCP4371AAEDR2G BD8665GW-E2 MAX8934EETI+T