HMIC ${ }^{\text {TM }}$ Silicon SP5T PIN Diode Switch with Integrated Bias Network

Features

- Broad Bandwidth Specified up to 18 GHz
- Usable up to 26 GHz
- Integrated Bias Network
- Low Insertion Loss / High Isolation
- Rugged, Glass Encapsulated Construction
- Fully Monolithic
- RoHS* Compliant

Description

The MA4SW510B-1 device is a SP4T broadband switch with integrated bias network utilizing MACOM's HMIC ${ }^{\text {TM }}$ (Heterolithic Microwave Integrated Circuit) process, US Patent 5,268,310. This process allows the incorporation of silicon pedestals that form series and shunt diodes or vias by imbedding them in low loss, low dispersion glass. By using small spacing between elements, this combination of silicon and glass gives HMIC devices low loss and high isolation performance with exceptional repeatability through low millimeter frequencies. Large bond pads facilitate the use of low inductance ribbon bonds, while gold backside metallization allows for manual or automatic chip bonding via 80/20-Au/Sn, 62/36/2-Sn/Pb/Ag solders or electrically conductive silver epoxy.

These high performance switches are suitable for use in multi-band ECM, Radar, and instrumentation control circuits where high isolation to insertion loss ratios are required. With a standard $+5 \mathrm{~V} /-5 \mathrm{~V}$, TTL controlled PIN diode driver, 80 ns switching speeds can be achieved.

Ordering Information

Part Number	Package
MA4SW510B-1	Waffle Pack

Functional Diagrams

Yellow areas denote wire bond pads

*Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathrm{C}, 10 \mathrm{~mA}$ (On-Wafer Measurements)

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$\begin{gathered} 2 \mathrm{GHz} \\ 6 \mathrm{GHz} \\ 12 \mathrm{GHz} \\ 18 \mathrm{GHz} \end{gathered}$	dB	-	$\begin{aligned} & \overline{0.9} \\ & 1.2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 1.5 \\ & 2.1 \end{aligned}$
Isolation	$\begin{gathered} 2 \mathrm{GHz} \\ 6 \mathrm{GHz} \\ 12 \mathrm{GHz} \\ 18 \mathrm{GHz} \end{gathered}$	dB	$\begin{aligned} & 45 \\ & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 48 \\ & 40 \\ & 35 \end{aligned}$	-
Input Return Loss	6 GHz 12 GHz 18 GHz	dB	-	$\begin{aligned} & 20 \\ & 20 \\ & 17 \end{aligned}$	-
Output Return Loss	$\begin{aligned} & 2 \mathrm{GHz} \\ & 6 \mathrm{GHz} \\ & 12 \mathrm{GHz} \\ & 18 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 22 \\ & 19 \\ & 19 \\ & 17 \end{aligned}$	-
Switching Speed ${ }^{1}$	10 GHz	ns	-	80	-

1. Typical switching speed is measured from (10\% to 90% and 90% to 10% of detected RF voltage), driven by TTL compatible drivers. In the modulating state, (the switching port is modulating, all other ports are in steady state isolation.) The switching speed is measured using an $R C$ network using the following values: $R=50-200 \Omega, C=390-1000 \mathrm{pF}$. Driver spike current, $\mathrm{I}_{\mathrm{C}}=\mathrm{C} \mathrm{dv} / \mathrm{dt}$, ratio of spike current to steady state current, is typically 10:1.

Absolute Maximum Ratings ${ }^{2,3,4}$

Parameter	Absolute Maximum
RF CW Incident Power	+33 dBm
Reverse Voltage	-50 V
Bias Current per Port	$\pm 50 \mathrm{~mA} @+25^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. MACOM does not recommend sustained operation near these survivability limits.
4. Maximum operating conditions for a combination of RF power, DC bias and temperature: +33 dBm CW @ 15 mA (per diode) @ $+85^{\circ} \mathrm{C}$.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) and Class C1 (CDM).devices.

HMIC ${ }^{\text {TM }}$ Silicon SP5T PIN Diode Switch with Integrated Bias Network

Typical Performance Curves:

Insertion Loss vs. Frequency

Input Return Loss vs. Frequency

Isolation vs. Frequency

Output Return Loss vs. Frequency

HMIC ${ }^{\text {TM }}$ Silicon SP5T PIN Diode Switch with Integrated Bias Network

Operation of the MA4SW510B-1 PIN Switch

Operation of the HMIC Series of PIN switches is achieved by the simultaneous application of negative DC current to the low loss port and positive DC current to the remaining isolated switching ports per the Driver Connections table below. The control currents should be supplied by constant current sources. For insertion loss, -10 mA bias results in approximately -2 V , and for Isolation, +10 mA yields approximately +0.9 V at the respective bias nodes. The backside area of the die is the RF and DC return ground plane.

Typical Bias Network

Typical Driver Connections

DC Control Current (mA)						RF Output States				
B2	B3	B4	B5	B6	J1-J2	J1-J3	J1-J4	J1-J5	J1-J6	
-10	+10	+10	+10	+10	low loss	Isolation	Isolation	Isolation	Isolation	
+10	-10	+10	+10	+10	Isolation	low loss	Isolation	Isolation	Isolation	
+10	+10	-10	+10	+10	Isolation	Isolation	low loss	Isolation	Isolation	
+10	+10	+10	-10	+10	Isolation	Isolation	Isolation	Iow loss	Isolation	
+10	+10	+10	+10	-10	Isolation	Isolation	Isolation	Isolation	low loss	

МАСОМ.

HMIC ${ }^{\text {TM }}$ Silicon SP5T PIN Diode Switch with Integrated Bias Network

Chip Dimensions ${ }^{5,6}$

5. Topside and backside metallization is gold, $2.5 \mu \mathrm{~m}$ thick typical.
6. Yellow areas indicate wire bonding pads.

DIM	Mils		Millimeters	
	Min.	Max.	Min.	Max.
A	54.0	55.0	1.37	1.40
B	27.0	28.0	0.69	0.71
C	30.0	31.0	0.76	0.79
D	31.0	32.0	0.79	0.81
E	19.0	20.0	0.48	0.51
F	118.5	120.5	3.01	0.06
G	35.0	36.0	0.89	0.178×0.127 ref.
RF Bond Pads (J1 - J6)	7.0×5.0 ref.	0.127×0.127 ref.		
DC Bond Pads (B2 - B6)	5.0×5.0 ref.	0.127 ref.		
Chip Thickness	5.0 ref.			

Cleanliness

The chips should be handled in a clean environment free of dust and organic contamination.

Wire / Ribbon Bonding

Thermo compression wedge bonding using 0.003 " x 0.00025 " ribbon or 0.001 " diameter gold wire is recommended. A work stage temperature of $150^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$, tool tip temperature of $120^{\circ} \mathrm{C}-150^{\circ}$ and a downward force of 18 to 22 grams should be used. If ultrasonic energy is necessary, it should be adjusted to the minimum level required to achieve a good bond. Excessive power or force will fracture the silicon beneath the bond pad causing it to lift. RF bond wires and ribbons should be kept as short as possible for optimum RF performance.

Chip Mounting

HMIC switches have Ti-Pt-Au backside metallization and can be mounted using a gold-tin eutectic solder or conductive epoxy. Mounting surface must be free of contamination and flat.

Eutectic Die Attachment

An 80/20, gold-tin, eutectic solder is recommended. Adjust the work surface temperature to $255^{\circ} \mathrm{C}$ and the tool tip temperature to $265^{\circ} \mathrm{C}$. After placing the chip onto the circuit board re-flow the solder by applying hot forming gas ($95 / 5 \mathrm{Ni} / \mathrm{H}$) to the top surface of the chip. Temperature should be approximately $290^{\circ} \mathrm{C}$ and not exceed $320^{\circ} \mathrm{C}$ for more than 20 seconds. Typically no more than three seconds is necessary for attachment. Solders rich in tin should be avoided

Epoxy Die Attachment

A minimum amount of epoxy, 1-2 mils thick, should be used to attach chip. A thin epoxy fillet should be visible around the outer perimeter of the chip after placement. Epoxy cure time is typically 1 hour at $150^{\circ} \mathrm{C}$.

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4AGSW5 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

