

Rev. V1

Features

• Gain: 21 dB @ 10 GHz

• Noise Figure: 1.4 dB @ 10 GHz

• Output P1dB: 14 dBm

Single Voltage Bias: 3.3 V to 5 V

Power Down Capability

Lead-Free 2 mm 8-lead PDFN Package

• Halogen-Free "Green" Mold Compound

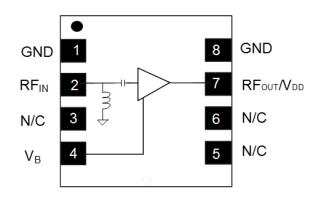
RoHS* Compliant

Description

The MAAL-011130 is an easy-to-use, broadband, low noise amplifier with 19 dB typical gain from 2 to 18 GHz. The input and output are fully matched to 50 Ω with typical return loss >10 dB. Third order linearity (OIP3) is typically 23 dBm and reverse isolation is >35 dB.

Single voltage (V_{DD} from +3.3 V to +5 V) operation is achieved using an external resistor, R_B , between pin 4 and V_{DD} . The value of R_B will set the drain current. Alternatively, the application of a bias voltage (V_B) to pin 4 allows for the adjustment of drain current from 5 mA to 80 mA and provides power down capability, achieved by applying V_B <0.2 V. See biasing information on pages 3 and 4.

The MAAL-011130 is housed in a lead-free 2 mm 8—lead PDFN package compatible with standard pick and place assembly equipment.


The MAAL-011130 is well suited to multiple applications such as X-Band satellite communication receivers and wideband A&D systems.

Ordering Information^{1,2}

Part Number	Package
MAAL-011130	Bulk
MAAL-011130-TR3000	3000 piece reel
MAAL-011130-SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 3 loose parts.

Functional Schematic

Pin Configuration^{3,4}

Pin No.	Pin Name	Description		
1	GND	DC + RF ground		
2	RF _{IN}	RF input		
3	N/C	No connection		
4	V _B	Bias control voltage		
5	N/C	No connection		
6	N/C	No connection		
7	RF _{OUT} / V _{DD}	RF output and V _{DD}		
8	GND	DC + RF ground		
	Paddle	DC + RF ground		

- MACOM recommends connecting unused package pins to ground
- The exposed pad centered on the package bottom must be connected to RF and DC ground.

1

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

MAAL-011130

Broadband Low Noise Amplifier 2 - 18 GHz

Rev. V1

Electrical Specifications: $T_A = +25$ °C, $V_{DD} = 5$ V, $V_B = 0.9$ V⁵, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	2 GHz 6 GHz 10 GHz 14 GHz 18 GHz	dB	19	27 23 21 19 14	
Output P1dB	2 GHz 6 GHz 10 GHz 14 GHz 18 GHz	dBm —		12 13 14 15	_
Noise Figure	2 GHz 6 GHz 10 GHz 14 GHz 18 GHz	dB —		2.1 1.2 1.4 1.8 2.9	1.8
Output IP3	P _{IN} = -22 dBm/tone (10 MHz Tone Spacing) 2 GHz 6 GHz 10 GHz 14 GHz 18 GHz		_	18 20 24 25 24	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	10	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	10	_
Isolation	P _{IN} = -20 dBm	dB	_	35	_
Bias Current	_		_	76	90

^{5.} For single voltage operation, refer to typical R_B values and biasing information on pages 3 and 4.

Rev. V1

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum	
Input Power	10 dBm	
Operating Voltage	7 V	
Operating Temperature	-40 °C to +85 °C	
Storage Temperature	-65 °C to +150 °C	
Junction Temperature ^{8,9}	+150 °C	

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 8. Operating at nominal conditions with $T_J \le +150$ °C will ensure MTTF > 1 x 10^6 hours.
- 9. Junction Temperature (T_J) = T_C + Θ jc * (V * I). Typical thermal resistance (Θ jc) = 126°C/W. a) T_C = +25°C,

T_J = 76°C @ 5 V, 80 mA

b) $T_C = +85^{\circ}C$,

T_J = 136°C @ 5 V, 80 mA

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1A devices.

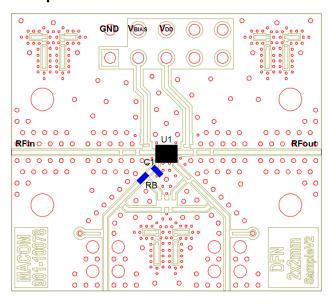
Application Information

The MAAL-011130 is designed for simple implementation with high performance. The ultra small size, fully matched, and simple bias application allows easy placement on system boards. It has a shunt inductor connected to ground on the input for ESD protection. For this reason, an input DC blocking capacitor is required if DC voltage is present on the input.

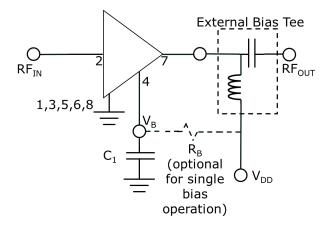
Bias Adjust Using V_B

Pin 4 can be connected to a separate voltage source to achieve the desired I_{DD} . The amplifier will be powered down by applying a V_B of 0.2 V or less.

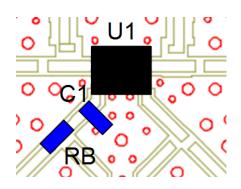
The following tables show typical total drain current $(I_{D_TOTAL} = I_{D_BIAS} + I_{DD})$, where I_{D_BIAS} is the current drawn by the V_B pin and I_{DD} is the drain current) versus bias voltage (V_B) values for V_{DD} voltages of 5.0 V and 3.3 V. Also shown in each case is a typical value of R_B required to set I_{DD} if using a single supply (see Single Bias Operation information on page 4).


V _{DD} = 3.3 V				
V _B (V)	I _{D_TOTAL} (mA)	I _{D_BIAS} (mA)	I _{DD} (mA)	R_B (k Ω)
0.6	32.9	1.2	31.7	2.2
0.7	44.9	2.3	42.6	1.1
8.0	56.7	3.5	53.3	0.7
0.9	67.4	4.6	62.8	0.5
1.0	76.4	5.8	70.5	0.4

V _{DD} = 5 V				
V _B (V)	I _{D_TOTAL} (mA)	I _{D_BIAS} (mA)	I _{DD} (mA)	R _B (kΩ)
0.6	40	1.1	39	4.0
0.7	53	2.3	50	1.9
8.0	65	3.4	62	1.3
0.9	77	4.5	73	0.9
1.0	89	5.8	83	0.7



Rev. V1


Sample PCB

Application Schematic

Sample PCB layout

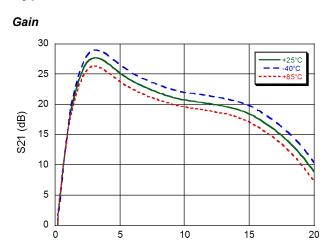
Single Bias Operation

Connecting V_{DD} to pin 4 using an external resistor R_B enables single bias operation of the amplifier, where the value of external resistor R_B can be used to set the desired I_{DD} .

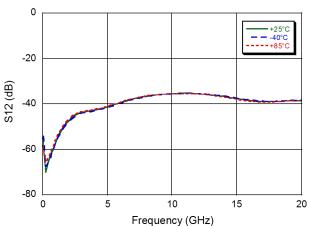
In this configuration, power down mode cannot be used unless a switch is included to connect V_{B} to ground.

Grounding

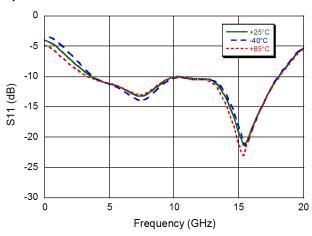
It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.


Parts List

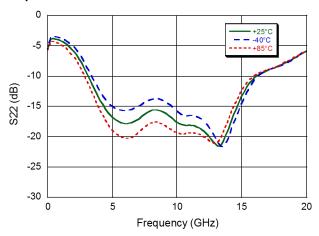
Des	Value	Size	Part Number	Purpose
C1	0.01 μF	0201	Murata GRM033R70J103KA01D	Bypass
U1	_	2 mm	MACOM MAAL-011130	LNA

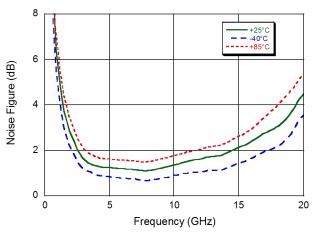

Rev. V1

Typical Performance Curves $V_{DD} = 5 V$, $V_B = 0.9 V$



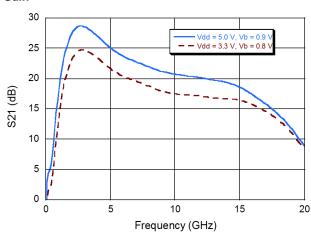
Frequency (GHz)

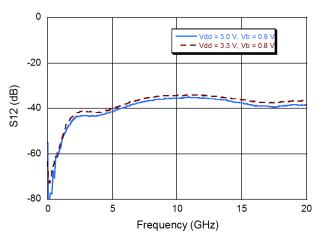

Isolation


Input Return Loss

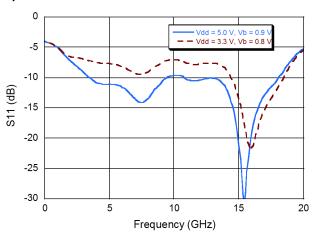
Output Return Loss

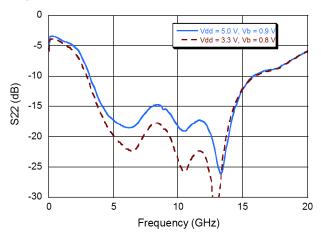
Noise Figure




Rev. V1

Typical Performance Curves T_A = 25°C, V_{DD} = 3.3 V & 5 V

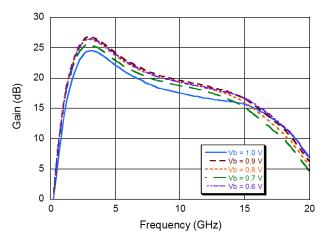


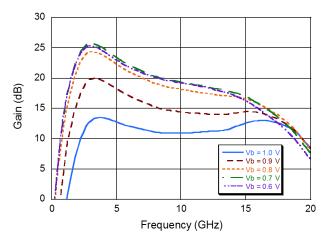

Isolation

Input Return Loss

Output Return Loss

Noise Figure

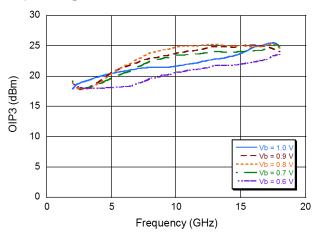


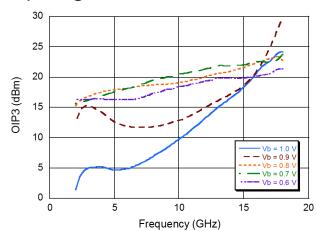

Rev. V1

Typical Performance Curves $T_A = 25$ °C, $V_{DD} = 5$ V & 3.3 V

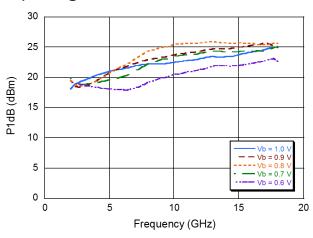
Gain vs. V_B for $V_{DD} = 5 V$

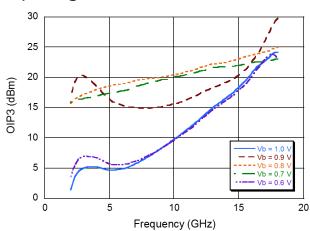
Gain vs. V_B for $V_{DD} = 3.3 \text{ V}$

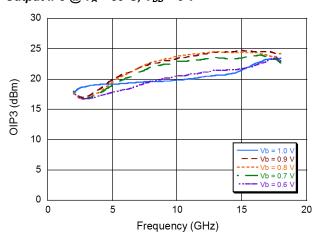


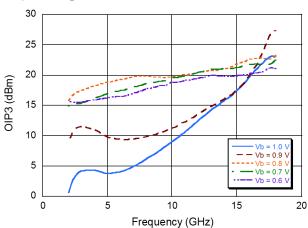

Rev. V1

Typical Output IP3 Curves V_{DD} = 5 V and 3.3 V


Output IP3 @ $T_A = 25^{\circ}C$, $V_{DD} = 5 V$


Output IP3 @ $T_A = 25^{\circ}C$, $V_{DD} = 3.3 \text{ V}$


Output IP3 @ $T_A = -40$ °C, $V_{DD} = 5 \text{ V}$

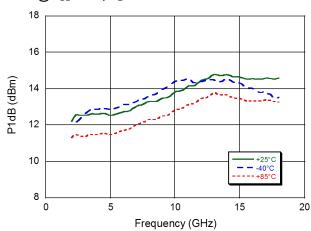

Output IP3 @ $T_A = -40^{\circ}C$, $V_{DD} = 3.3 \text{ V}$

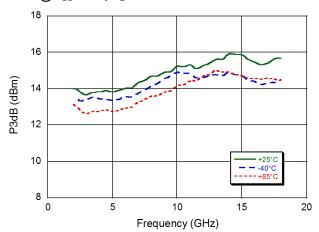
Output IP3 @ $T_A = 85$ °C, $V_{DD} = 5 V$

Output IP3 @ $T_A = 85^{\circ}C$, $V_{DD} = 3.3 \text{ V}$

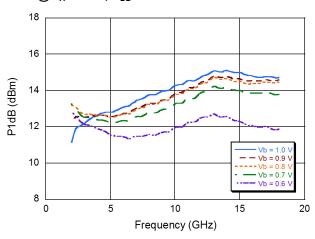
8

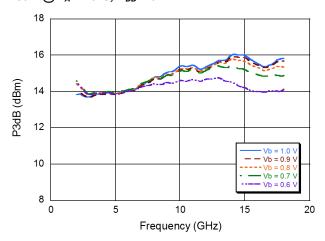
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.


Rev. V1

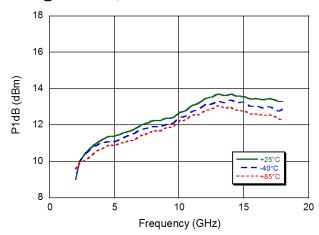
Typical P1dB and P3dB Curves V_{DD} = 5 V

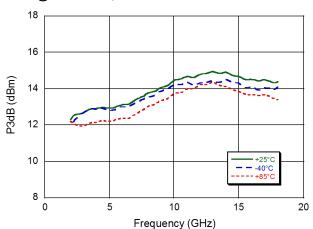

 $P1dB @ V_{DD} = 5 V, V_B = 0.9 V$


$P3dB @ V_{DD} = 5 V, V_B = 0.9 V$

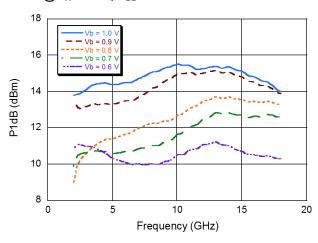
P1dB @ $T_A = 25^{\circ}C$, $V_{DD} = 5 V$

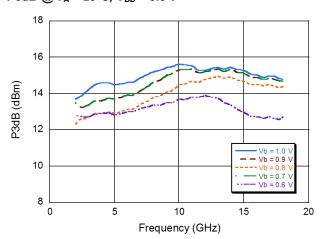
 $P3dB @ T_A = 25^{\circ}C, V_{DD} = 5 V$



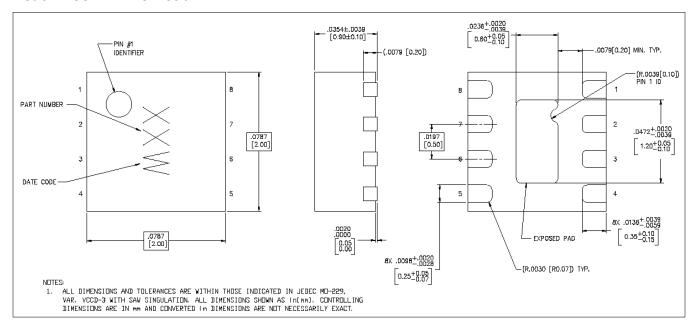

Rev. V1

Typical P1dB and P3dB Curves V_{DD} = 3.3 V


 $P1dB @ V_{DD} = 3.3 V, V_B = 0.8 V$


 $P3dB @ V_{DD} = 3.3 V, V_B = 0.8 V$

 $P1dB @ T_A = 25^{\circ}C, V_{DD} = 3.3 V$


 $P3dB @ T_A = 25^{\circ}C, V_{DD} = 3.3 V$

Rev. V1

Lead-Free 2 mm 8-Lead PDFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

MAAL-011130

Broadband Low Noise Amplifier 2 - 18 GHz

Rev. V1

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310