MAAM-011109-000DIE

DATA SHEET

Wideband Amplifier (WBA)

DC – 40GHz

Features

- 15 dB Typical Gain
- 50 Ω match in and out
- +20 dBm output power
- +5V DC supply, 190mA
- Bare Die
- RoHS Complaint and 260 °C Reflow

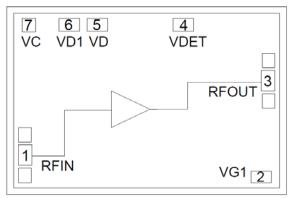
Description

1

The MAAM-011109-000DIE is a easy-to-use, GaAs MMIC distributed amplifier for applications between DC and 40 GHz and features 15 dB typical gain and +20dBm of output power. Matching is 50 Ω with typical return loss better than 15 dB. The WBA requires dual DC supplies: 5V (190 mA typical) and a low current negative VG1 (< 1mA).

Some other features include: a gain trim control pin that allows 15 dB of gain control (0 to -1V), and a temperature compensated detector pin that provides a DC voltage in relation to output power.

Typical usage is any application that requires 50 Ω gain from DC to 40GHz. It is useful in application where the incoming signal varies over a broad bandwidth such as a laboratory, instrumentation, and defense applications.


The WBA is a 2.05 x 1.38 mm bare die GaAs MMIC that can be handled and placed with standard pick and place assembly equipment. The GaAs MMIC is fully passivated for performance and reliability.

* Restrictions on Hazardous Substances, European Union Directive 2001/95/EC

Advanced

Rev.V1B Apr 2014

Functional Schematic

Pin Configuration

PIN No.	Pin Name	Description	
1	RFIN	RF input	
2	V_{G1}	Gate Voltage (negative)	
3	RFout	RF output	
6	VDET	Power detector	
7	VD	Termination Bypass (alternate supply current)	
8	V _{D1}	Termination Bypass	
9	Vc	Gain Control	

Ordering Information

Part Number	Package		
MAAM-011109-000DIE	Bare Die		

ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed **PRELIMINARY**: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed North America Tel: 800.356.2266 India Tel: +91.80.43537383 Europe Tel:+353.21.244.6400 China Tel: +88.44.844.8296

Visit www.macomtech.com for additional data sheets and product information

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice

DATA SHEET

Wideband Amplifier (WBA)

Advanced

DC – 40GHz

Rev.V1B Apr 2014

Parameter	Test Conditions		Units	Min.	Тур.	Max.
		0.1 GHz			15	
Gain		10 GHz	dB		16	
		40 GHz			15	
NF		DC to 40 GHz	dB		3.5	
P-1dB	Vd=5V	0.1 GHz			+21	
		10 GHz	dBm		+21	
		40 GHz			+15	
Output PSAT		0.1 GHz			+24	
		10 GHz	dBm		+23	
		40 GHz			+20	
Input Return Loss		DC to 40 GHz	dB		15	
Output Return Loss		DC to 40 GHz	dB		12	
Isolation		0.03 to 40GHz	dB		22	
Stability		Any load			unconditional	
Voltage Supply			v		5	
Bias Current	RFout= 5V, Vg1= -0.4V		mA		190	

Electrical Specifications T_A= 25°C, RF_{OUT}=+5V, I_{RFOUT}= 190mA, Z_{in}=Z_{out}=50Ω unless otherwise specified

Absolute Maximum Ratings ^{4,5,6,7}

Parameter	Absolute Maximum			
Input Power	+17 dBm			
Operating Voltage	+ 8 V			
Operating Current	+230mA			
Thermal Resistance Θ _{jc}	14 °C /W			
Operating Temperature	-40°C to +85 °C			
Junction Temperature ⁷	+ 150 °C			
Storage Temperature	-65°C to +150 °C			

4. Exceeding any or combination of these limits may cause permanent damage to the device

5. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.

6. Operating at nominal conditions with TJ≤ +150°C will ensure MTTF≥ 1x106 hours

2

- 7. Junction Temperature (T_j) = T_c + Θ_{jc} * ((V * I) (P_{out} P_{in})) Typical thermal resistance (Θ_{jc}) = 14 °C/W
 - a) For Tc = 25 °C T_j = 40 °C @ +5V, 190 mA, P_{out} =-5dBm, P_{in} =-20dBm
 - b) For Tc = 85 °C T_j =100°C @ +5V, 190 mA, P_{out} =-5dBm, P_{in} =-20dBm

Handling Procedures

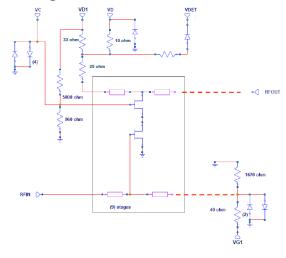
Please observe the following precautions to avoid damage

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 0 devices

ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed **PRELIMINARY**: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed North America Tel: 800.356.2266 Europe Tel:+353.21.244.6400 India Tel: +91.80.43537383 China Tel: +88.44.844.8296 Visit www.macomtech.com for additional data sheets and product

information M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice


DATA SHEET

Wideband Amplifier (WBA)

DC – 40GHz

Biasing Schematic

Application Information for DC & pins

For proper MAAM-011109-000DIE operation a DC voltage must be applied at the V_{G1} (-0.4v typical) and RF_{OUT} (+5V typical) pins *in that order.* Adjusting V_{G1} from -0.2v to -0.6 V will change the quiescent current.

The V_c pin is typically left unconnected unless gain control or output power limiting is desired. Please refer to the "Variable Gain/Limiting" section for detailed usage

The V_D and V_{D1} pins should be bypassed with at least 0.1 μ F for stability. The V_{G1} and V_C pins must also be bypassed with a 0.1uF. The V_D pin can be used as a alternate bias point for the die. Rather than installing a bias tee at the RF_{OUT} pin a low impedance bias source can be connected to the V_D pin. The V_D pin has a limited current capability of 100mA maximum, and as shown in the Biasing Schematic a DC voltage drop will occur so the actual transistor voltage should be in the range of 3.3 to 7v for proper operation.

The V_{DET} pin is typically left unconnected unless a voltage reference is desired that is correlated to the output power. Please refer to the "Internal Detector" section for detailed usage.

3

ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed PRELIMINARY: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed Advanced

Rev.V1B Apr 2014

The backside of the die should be connected to ground with as many vias as possible to maximize high frequency performance, thermal dissipation, and stability.

Application Details

Bandwidth, Power, Noise and Linearity

Supply voltage and current affect both the bandwidth (response flatness), power available, noise figure, and linearity of the amplifier. Higher currents and lower supply voltage increase high frequency gain but reduce the P-1dB and the OIP3 numbers. If the device is driven to P-1dB and on into Psat the supply current will naturally reduce. The device will return to the quiescent current value once the input power is reduced. Finally, higher supply current values increase the device noise figure.

Temperature also affects the bandwidth, gain and noise figure of the device. Lower temperatures increase gain and bandwidth and reduce the noise figure. Temperature has little effect on power and linearity.

Broadband Amplifier Applications

The MAAM-011109-000DIE also has a low enough noise figure to be used in instrumentation front ends and buffer applications. It also has very flat response with low group delay distortion so it can be used in pulse applications. For higher gains multiple amplifiers may be cascaded. It also makes a very good low cost optical driver capable of delivering to 8V p-p into 50 ohms.

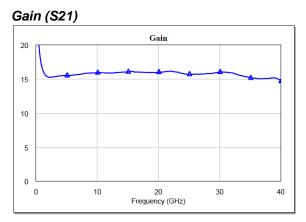
North America Tel: 800.356.2266 Europe Tel:+353.21.244.6400 India Tel: +91.80.43537383 China Tel: +88.44.844.8296 Visit www.macomtech.com for additional data sheets and product

information

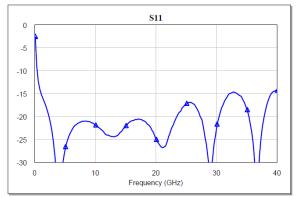
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice

MAAM-011109-000DIE

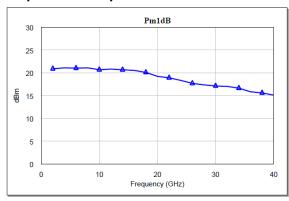
DATA SHEET



Wideband Amplifier (WBA)


DC – 40GHz

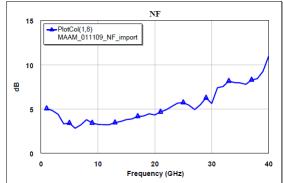
Typical Performance Curves


T_A= 25°C, RF_{OUT}=+5V, I_{RFOUT}=190mA, Z_{in}=Z_{out}=50Ω

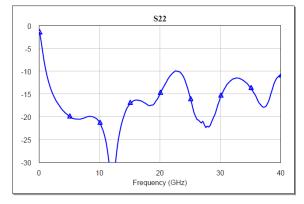
Input Reflection (S11)

Output 1dB Compression Power

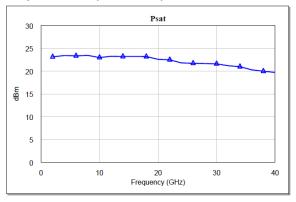
4


ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed PRELIMINARY: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed

Advanced


Rev.V1B Apr 2014

* Lack of VD1 capacitor causes gain rise below 2GHz



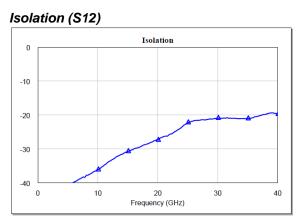
Output Reflection (S22)

North America Tel: 800.356.2266 India Tel: +91.80.43537383

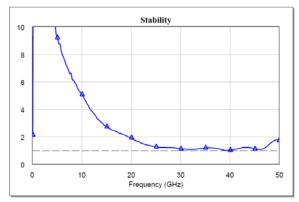
Europe Tel:+353.21.244.6400 China Tel: +88.44.844.8296 Visit www.macomtech.com for additional data sheets and product

information

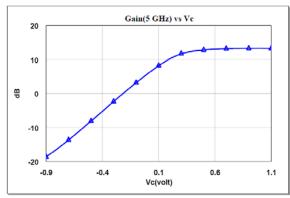
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice DATA SHEET



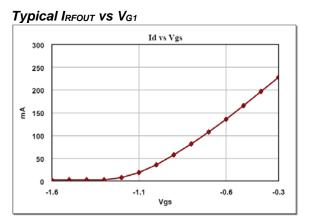
Wideband Amplifier (WBA)


DC – 40GHz

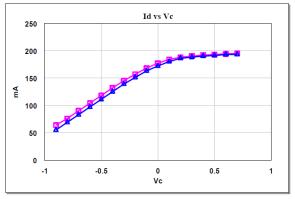
Typical Performance Curves


T_A= 25°C, RF_{OUT}=+5V, I_{RFOUT}=190mA, Z_{in}=Z_{out}=50Ω unless otherwise stated

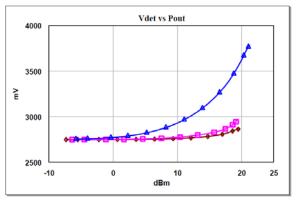
Stability Factor (K)



Gain(@5 GHz) vs. Vc



5


ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed **PRELIMINARY**: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed

Typical IRFOUT VS Vc (3.3 & 5v)

VDET VS Power out @ 2GHz, 10GHz, & 25GHz

North America Tel: 800.356.2266 Europe Tel:+353.21.244.6400 India Tel: +91.80.43537383 China Tel: +88.44.844.8296

Visit www.macomtech.com for additional data sheets and product information

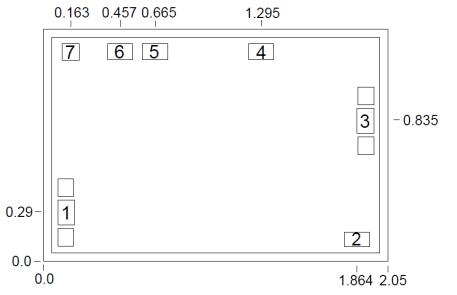
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice

Advanced

Rev.V1B Apr 2014

MAAM-011109-000DIE

DATA SHEET


Wideband Amplifier (WBA)

DC – 40GHz

Advanced

Rev.V1B Apr 2014

Outline Drawing

Variable Gain/Limiting Applications

The gain of the MAAM-011109-000DIE can be easily controlled with the Vc pin. The gain reduction is almost linear with Vc between 0.1V to -0.8V. Below -0.7v internal ESD protection diodes will draw increasing current (50mA at -1.0v). The Vc pin should not be driven below -1v or above 1.2v. The nominal open circuit voltage at the Vc pin is 0.8v. Reducing Vc below 0.8v will also reduce the supply current. Gain, P-1dB, and Psat will all be reduced as Vc is lowered. Limiting applications and zero crossing adjustment can be done by adjusting the V_{G1} and Vc pins together.

Internal Detector

The V_{DET} pin is connected to an internal diode detector. This pin should be connected to a high impedance (> $50k\Omega$) or left unconnected. The detector is internally connected so that it responds predominately to the power generated by the amplifier. The detector has a low pass characteristic which rolls off gradually above 2 GHz. The detector is temperature compensated.

6

ADVANCED : Data sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed **PRELIMINARY**: Data Sheets containing information regarding M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to production in volume is not guaranteed

Finally, even with zero output power the detector has a DC output voltage proportional to the supply voltage (nominally 2.8v for 5v at the RF_{OUT} pin).

North America Tel: 800.356.2266 India Tel: +91.80.43537383

Europe Tel:+353.21.244.6400 China Tel: +88.44.844.8296

Visit www.macomtech.com for additional data sheets and product information

 $\it M/A-COM$ Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information herein without notice

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by MACOM manufacturer:

Other Similar products are found below :

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016