MADP-011029-14150

High Power PIN Diode 50 MHz - 12 GHz

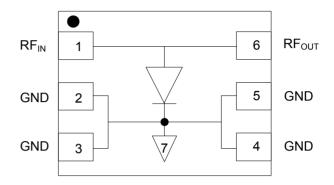
Rev. V3

Features

- 3 Terminal LPF Broadband Shunt Structure
- 50 MHz 12 GHz Broadband Frequency
- >100 W Peak Power Handling
- < 0.1 dB Shunt Insertion Loss
- > 25 dB Shunt Isolation
- < 20°C/W Thermal Resistance
- Lead-Free 1.5 x 1.2 mm 6-lead TDFN Package
- RoHS* Compliant and 260°C Reflow Compatible

Description

The MADP-011029 is a lead-free 1.5 x 1.2 mm TDFN surface mount plastic package that provides both low and high signal frequency operation from 50 MHz to 12 GHz. The higher breakdown voltage and lower thermal resistance of the PIN diode provides peak power handling in excess of 100 W.


This device is ideally suitable for usage in higher incident power switches, phase shifters, attenuators, and limiter microwave circuits over a broad frequency where higher performance surface mount diode assemblies are required.

Ordering Information^{1,2}

Part Number	Package
MADP-011029-14150T	3000 piece reel
MADP-011029-000SMB	Sample board

- 1. Reference Application Note M513 for reel size information.
- 2. All RF Sample boards include 5 loose parts.

Functional Schematic

Pin Configuration³

Pin No.	Pin Name	Description
1	RF _{IN}	RF Input
2	GND	Ground
3	GND	Ground
4	GND	Ground
5	GND	Ground
6	RF _{OUT}	RF Output
7	Paddle ⁴	Ground

- MACOM recommends connecting unused package pins to ground
- The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

MADP-011029-14150

High Power PIN Diode 50 MHz - 12 GHz

Rev. V3

Electrical Specifications: T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Forward Voltage	+ 50 mA DC	V	0.7	0.9	1.1
Reverse Leakage Current	-200 V DC	nA	_	- 20	-1000
Total Capacitance ⁵	-50 V @ 1 GHz	pF	_	0.31	0.40
Series Resistance ⁶	+10 mA @ 1 GHz	Ω	_	1.5	1.9
Parallel Resistance ⁶	-Vdc = -40 V, @ 100 MHz	ΚΩ	_	1000	_
Minority Carrier Lifetime	+If = 10 mA / -Ir = -6 mA (50% Control Voltage, 90% Output Voltage)	μs		1.0	2.0
CW Thermal Resistance (Infinite Heat Sink at Thermal Ground Plane)	I High = 4 A, I low = 10 mA @ 10 kHz	°C/W		20	
Power Dissipation ^{7,8} (Infinite Heat Sink at Thermal Ground Plane)	+If = 50 mA @ 1 GHz	W		7.5	
Insertion Loss	F = 1 GHz, -Vdc = -10 V	dB	_	0.1	_
Isolation	F = 1 GHz, +I bias = +10 mA	dB	23	25	

- 5. Ct (Total Capacitance) = CJ (Junction Capacitance) + Cp (Parasitic Package Capacitance).
- 6. Rs and Rp are measured on an HP4291A Impedance Analyzer.
- 7. De-rate power dissipation linearly by -50 mW/°C to 0 W @ +175°C: Pd (T) = Pd (+25°C) Δ P = Pd (+25°) (50 mV/°C) (Δ T).
- 8. PD = ΔTj / Θ or PD=(IF + IRF) 2 (Rs), where IF is the forward bias DC current and IRF is the forward bias RMS RF current.

Absolute Maximum Ratings^{9,10}

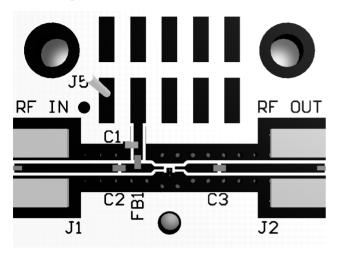
Parameter	Absolute Maximum
DC Forward Voltage @ +250 mA	1.2 V
DC Forward Current	250 mA
DC Reverse Voltage	-400 V
Junction Temperature	+175°C
Operating Temperature	-65°C to +125°C
Storage Temperature	-65°C to +150°C

^{9.} Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

Please observe the following precautions to avoid damage:

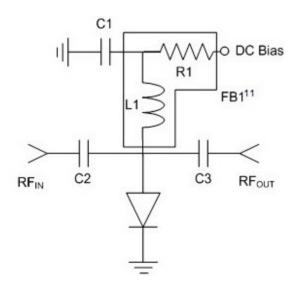
Static Sensitivity


These devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

MACOM does not recommend sustained operation near these survivability limits.

Rev. V3

PCB Layout



500 - 5000 MHz Parts List12

Part	Value	Case Style
C1	62 pF	0402
C2, C3	100 pF	0402
FB1	470 Ω @ 1 GHz	0402
R1	150 Ω	0402
L1	82 nH	0402

 Max DC voltage with recommended components not to exceed 100 V.

PCB Schematic

11. R1 is not needed when using the recommended ferrite FB1.

Assembly Recommendations

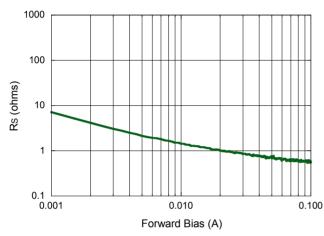
Devices may be soldered using standard Pb60/Sn40, or RoHS compliant solders. Leads are plated NiPdAuAg to ensure an optimum solderable connection.

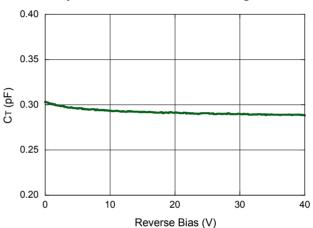
For recommended Sn/Pb and RoHS soldering profile See Application Note M538 on the MACOM website.

Cleanliness and Storage

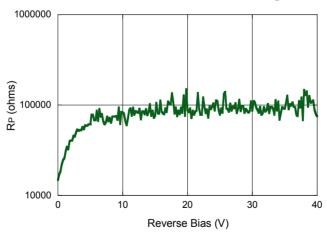
These devices should be handled and stored in a clean environment. Ends of the device are NiPdAuAg plated for greater solderability. Exposure to high humidity (>80%) for extended periods may cause the surface to oxidize. Caution should be taken when storing devices for long periods.

General Handling

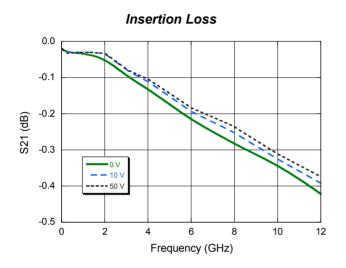

Device can be handled with tweezers or vacuum pickups and are suitable for use with automatic pick-and-place equipment.

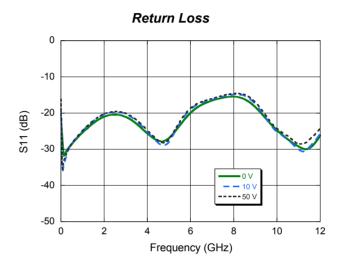

Rev. V3

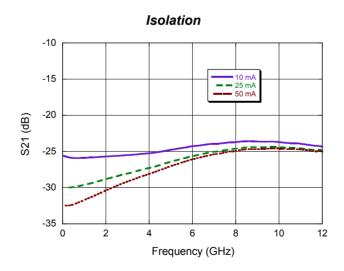
Typical 1 GHz Parametric Curves


Series Resistance vs. Forward Current

Capacitance vs. Reverse Voltage

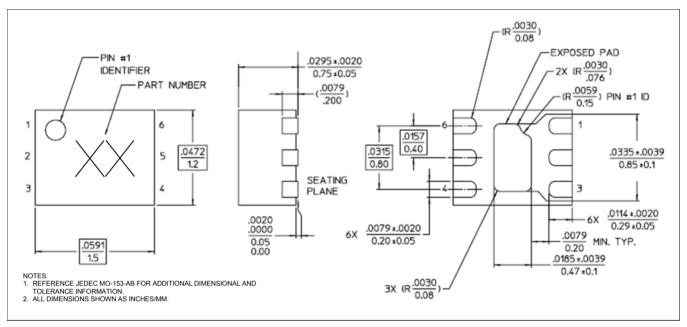

Parallel Resistance vs. Reverse Voltage





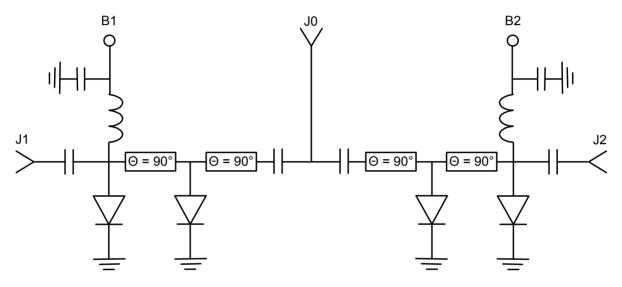
Rev. V3

Typical RF Small Signal Performance Curves



Rev. V3

Lead-Free 1.5 x 1.2 mm 6-Lead TDFN[†]


[†] Reference Application Note <u>S2083</u> for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is NiPdAuAg.

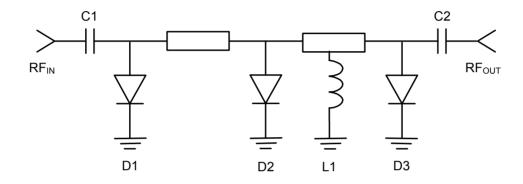
Rev. V3

Applications Section

Schematic of High Power SP2T Shunt Switch using MADP-011029-14150T PIN Diodes F = Octave Bandwidth from 1 to 12 GHz P_{inc} = +40 dBm CW P_{inc} = +50 dBm, 10 μ s PW, 1% Duty

L = 11.807 / (
$$\epsilon$$
 eff $^{\frac{1}{2}} * F * 4$) inches, $\theta = \beta * L = (2 \pi / \lambda) * L = 90°$

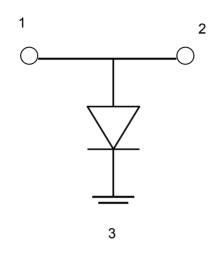
Frequency is in GHz, Eeff is Effective Dielectric Constant of Transmission Line Medium

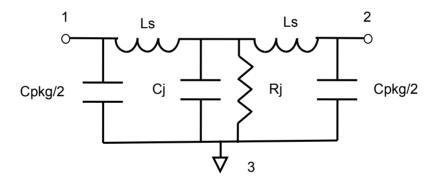

RF State	B1 Bias	B2 Bias
J0-J1 Low Loss & J0-J2 Isolation	-50 V @ 0 mA	+1 V @ +20 mA
J0-J2 Low Loss & J0-J1 Isolation	+1 V @ +20 mA	-50 V @ 0 mA

Rev. V3

Applications Section

Schematic of 3 Stage Limiter using MADP-011029-14150T F = 1000 - 8000 MHz $P_{inc} = +47 \text{ dBm CW}$ $P_{inc} = +50 \text{ dBm, } 10 \text{ } \mu\text{s P.W., } 1\% \text{ Duty}$




Part	PN	Case Style	Description	Quantity
D1	MADP-011029-14150T	ODS-1415	Input PIN Diode	1
D2	MADL-011023-14150T	ODS-1415	2nd Stage PIN Diode	1
D3	MADL-011023-14150T	ODS-1415	3rd Stage PIN Diode	1
L1	33 nH	0402	RF Choke / DC Return	1
C1	27 pF	0402	DC Block	1
C2	27 pF	0402	DC Block	1

Rev. V3

Microwave Model of MADP-011029-14150T

Rj = Rs (Forward Bias Current) Rj = Rp (Reverse Bias Voltage)

Parameter	Value
$C_{package}$	8.0E-14 F
L bond = Ls	4.0E-10 H
Rs	0.9 Ω
Rp	5E+5 Ω

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for PIN Diodes category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

MA45471 MA4SPS502 APD2220-000 APD0810-000 MA4GP907 MA4L032-186 MA4L401-30 MA4P606-258 MA4P7435NM-1091T

MA4PK2000 MA4PK2001 MA4PK2004 MADP-007167-12250T MADP-030025-13140P MA4SPS421 MA4PBL027 MA4P404-30

MA4AGFCP910 MA4P7101F-1072T MA4L022-30 MA47047-54 BAR 89-02LRH E6327 UM7108B UM9701 1SV308,L3F UM9301SM

5082-3077 GC4723-42 MA4L011-1088 MSW2001-200 SMP1321-000 M17X1008 UM4010SM UM6002B UM7006A UM7006B

UM7108C GC4742-42 MADP-000015-000030 MGPN1503-C01A UMX512 LXP1000-23-2 LXP1004-23-2 MPP4205A-206 MPP4201-206

LXP1002-23-0 LXP1004-23-0 MPP4202-206 MPP4205-206 MPC8050-206