Quad Driver for GaAs FET or PIN Diode
Switches and Attenuators

Features

- High Voltage CMOS Technology
- Four Channel
- Positive Voltage Control
- CMOS device using TTL input levels
- Low Power Dissipation
- Low Cost Lead-Free SOIC-16 Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant

Description

The MADR-009190-000100 is a four channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to 2 V (relative to GND) to optimize the intermodulation products of FET control devices at low frequencies. For driving PIN diode circuits, the outputs are nominally switched between $+5 \mathrm{~V} \&-5 \mathrm{~V}$. The actual driver output voltages will be lower when driving large currents due to the resistance of the output devices.

Ordering Information ${ }^{1}$

Part Number	Package
MADR-009190-000100	Bulk Packaging
MADR-009190-000DIE	100 piece waffle pack
MADR-009190-0001TR	1000 piece reel
MADR-009190-00GDIE	100 piece gel pack

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration ${ }^{2}$

Pin No.	Function	Pin No.	Function
1	$\mathrm{~V}_{\mathrm{EE}}$	9	Output A 1
2	$\mathrm{~V}_{\mathrm{CC}}$	10	Output B1
3	C 4	11	Output A2
4	C 3	12	Output B2
5	C 2	13	Output A3
6	C 1	14	Output B3
7	$\mathrm{~V}_{\mathrm{OPT}}$	15	Output A4
8	Ground	16	Output B4

2. The bottom of the die should be isolated for part number MADR-009190-000DIE and MADR-009190-00GDIE
[^0]
DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions	Units	Min.	Typ.	Max.
V_{IH}	Input High Voltage	Guaranteed High Input Voltage	V	2.0	-	-
VIL	Input Low Voltage	Guaranteed Low Input Voltage	V	-	-	0.8
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	V	$\mathrm{V}_{\text {OPT }}-0.1$	-	-
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=+0.5 \mathrm{~mA}$	V	-	-	$\mathrm{V}_{\mathrm{EE}}+0.1$
I_{N}	Input Leakage Current (per input)	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D, V_{E E}=\min , \\ & V_{C C}=\max , V_{O P T}=\min \text { or max } \end{aligned}$	nA	-250	-	250
Іон	DC Output Current - High (per output)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OPT}}=+5.0 \mathrm{~V} \end{gathered}$	mA	-35	-	-
loL	DC Output Current - Low (per output)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OPT}}=+5.0 \mathrm{~V} \end{gathered}$	mA	-	-	35
ІОh_spike	Peak Spike Output Current (Rising Edge) (per output)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OPT}}=+5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	mA	-	35	-
lol_sPike	Peak Spike Output Current (Falling Edge) (per output)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OPT}}=+5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	mA	-	50	-
Icc	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=+5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\Delta \mathrm{ICC}$	Additional Supply Current (per TTL input pin)	$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$	mA	-	-	1.0
$l_{\text {EE }}$	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \mathrm{V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OP}}=+5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\mathrm{I}_{\text {OPT }}$	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=+5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\mathrm{R}_{\text {NFET }}$	Output Resistance NFET On (to V_{EE})	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}= & +5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OPT}}= & +5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-4.9 \mathrm{~V} \\ & +25^{\circ} \mathrm{C}, \text { Note } 3 \end{aligned}$	Ω	-	40	-
$\mathrm{R}_{\text {PFET }}$	Output Resistance PFET On (to $\mathrm{V}_{\mathrm{OPT}}$)	$\begin{aligned} \mathrm{V}_{\mathrm{CC}}= & +5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OPT}}= & +5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=+4.9 \mathrm{~V} \\ & +25^{\circ} \mathrm{C}, \text { Note } 3 \end{aligned}$	Ω	-	45	-

3. See plot of $R_{\text {NFET }}$ and $R_{\text {PFET }}$ for variations over temperature for driving 4.99 k and 82 ohm resistive load. (Note that this corresponds to 1 mA and 33 mA currents at $+25^{\circ} \mathrm{C}$).

AC Characteristics Over Guaranteed Operating Range ${ }^{4}$

Symbol	Parameter	Unit	Typical performance		
			$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {PLH }}$	Propagation Delay	ns	20	22	25
$\mathrm{T}_{\text {PHL }}$	Propagation Delay	ns	20	22	25
$\mathrm{T}_{\text {TLH }}$	Output Transition Time (Rising Edge)	ns	5	6	8
$\mathrm{T}_{\text {THL }}$	Output Transition Time (Falling Edge)	ns	5	6	8
$\mathrm{T}_{\text {skew }}$	Delay Skew	ns	2	2	2
PRF (max.)	50\% Duty Cycle	MHz	DC	-	10
$\mathrm{C}_{\text {IN }}$	Input Capacitance	pF	5	5	5
$\mathrm{C}_{\text {PDC }}$	Power Dissipation Capacitance ${ }^{5}$	pF	50	50	50
$\mathrm{C}_{\text {PDE }}$	Power Dissipation Capacitance ${ }^{5}$	pF	100	100	100

4. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\min$ or max, $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, input LOGIC1 $=3 \mathrm{~V}, \mathrm{LOGIC0}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{RISE}}, \mathrm{T}_{\mathrm{FALL}}=6 \mathrm{~ns}$.
5. Total Power Dissipation is calculated by the following formula: $P D=V_{C C}{ }^{2} f C_{P D C}+V_{E E}^{2} f C_{P D E}$.

Truth Table

Input	Outputs	
Cn	An	Bn
Logic "0"	V_{EE}	$\mathrm{V}_{\mathrm{OPT}}$
Logic "1"	$\mathrm{V}_{\text {OPT }}$	V_{EE}

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Output Resistance vs. Temperature ${ }^{6}$

6. Output resistance were measured under the condition of $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=+5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$, with load resistors from outputs to ground.

Guaranteed Operating Ranges (for driving FET or PIN devices) ${ }^{7,8,9}$

Symbol	Parameter	Unit	Min.	Typ.	Max.
V_{CC}	Positive DC Supply Voltage	V	4.5	5.0	5.5
$\mathrm{~V}_{\mathrm{EE}}$	Negative DC Supply Voltage	V	-10.5	-5.0	-4.5
$\mathrm{~V}_{\mathrm{OPT}}{ }^{10,11}$	Optional DC Output Supply Voltage	V	0	-	V_{CC}
$\mathrm{V}_{\mathrm{OPT}}-\mathrm{V}_{\mathrm{EE}}$	Negative Supply Voltage Range	V	4.5	Note 10,11	16.0
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Positive to negative Supply Range	V	9.0	10.0	16.0
$\mathrm{~T}_{\mathrm{OPER}}$	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40	+25	+85
I_{OH}	DC Output Current - High	mA	-35	-	-
I_{OL}	DC Output Current - Low	mA	-	-	35
$\mathrm{~T}_{\text {RISE, }} \mathrm{T}_{\text {FALL }}$	Maximum Input Rise or Fall Time	ns	-	-	500

7. Unused logic inputs must be tied to either GND or V_{Cc}.
8. MACOM recommends that V_{CC} be powered on before V_{EE}, and powered off after V_{EE}.
9. $0.01 \mu \mathrm{~F}$ decoupling capacitors are required on the power supply lines.
10. $\mathrm{V}_{\mathrm{OPT}}$ is grounded in most cases when FETs are driven. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, $\mathrm{V}_{\text {Opt }}$ can be increased to between 1 and 2 V . The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz . It should be noted that the control current that is on the GaAs MMICs will increase when positive controls are applied.
11. When this driver is used to drive PIN diodes, $\mathrm{V}_{\mathrm{OPT}}$ is often set to +5 V , with V_{EE} set to -5 V .

MАСОM.

Quad Driver for GaAs FET or PIN Diode

Switches and Attenuators

Absolute Maximum Ratings ${ }^{12}$

Symbol	Parameter	Unit	Min.	Max.
$\mathrm{V}_{\text {cc }}$	Positive DC Supply Voltage	V	-0.5	7.0
Icc	Positive DC Supply Current $\left(-0.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 0.8 \mathrm{~V} ; 2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IN}} \leq 7.0 \mathrm{~V}\right)$	mA	-	20
$V_{\text {EE }}$	Negative DC Supply Voltage	V	-11.0	0.5
$\mathrm{I}_{\text {EE }}$	Negative DC Supply Current (per Output) ${ }^{13}$	mA	-50	-
$V_{\text {OPT }}$	Optional DC Output Supply Voltage	V	-0.5	$V_{C C}+0.5$
$\mathrm{I}_{\text {OPT }}$	Optional DC Output Supply Current (per Output) ${ }^{13}$	V	-	50
$\mathrm{V}_{\text {OPT }}-\mathrm{V}_{\text {EE }}$	Output to Negative Supply Voltage Range	V	-0.5	18.0
$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Positive to Negative Supply Voltage Range	V	-0.5	18.0
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	V	$\begin{gathered} -0.5 \\ \text { Note } 14 \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}+0.5$
Vo	DC Output Voltage	V	$V_{\text {EE }}-0.5$	$\mathrm{V}_{\text {OPT }}+0.5$
$\mathrm{P}_{\mathrm{D}}{ }^{15}$	Power Dissipation in Still Air	W	-	1
Toper	Operating Temperature	${ }^{\circ} \mathrm{C}$	-55	125
$\mathrm{T}_{\text {STG }}$	Storage Temperature	${ }^{\circ} \mathrm{C}$	-65	150
ESD	ESD Sensitivity	kV	2.0	-

12. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures
13. The maximum I_{EE} and $\mathrm{I}_{\mathrm{OPT}}$ are specified under the condition of $\mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=+5.5 \mathrm{~V}$, and the total power dissipation is within 1 W in still air.
14. If $\mathrm{V}_{\mathrm{CC}} \geq 6.5 \mathrm{~V}$, then the minimum for $\mathrm{V}_{\mathbb{I N}}$ is $\mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V}$.
15. Derate $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Switching Waveforms

\square

Equivalent Output Circuit for An and Bn Outputs (33 mA load at $25^{\circ} \mathrm{C}$)
(Sopt
\qquad

Typical Application for a SPDT Switch ${ }^{16}$

16. Only one section of MADR-009190 is shown. The other three sections will have equivalent performance.

Description of Circuit

The MADR-009190 provides four pairs of complementary outputs that are each capable of driving a maximum of $\pm 35 \mathrm{~mA}$ into a load. In addition, with proper capacitor selection (C3 \& C4) used in parallel with the current setting resistor (R1 \& R2), additional spiking current can be achieved.

To achieve the Non-Inverting and Inverting complementary voltages, each output is switched between two internal FETs. The FETs are connected to $\mathrm{V}_{\text {OPT }}$ for the positive output and $\mathrm{V}_{\text {EE }}$ for the negative output. $\mathrm{V}_{\text {OPt }}$ and V_{EE} are adjustable for various configurations and have the following limitations: V_{EE} can be no more negative than -10.5 volts; $V_{\text {орt }}$ can be no more positive than +5.5 volts and $V_{\text {Opt }}$ must always be less than or equal to V_{Cc}. Increasing $\mathrm{V}_{\mathrm{OPT}}$ beyond V_{CC} will prevent the device from switching states when commanded to by the logic input. The most common configuration is to drive V_{EE} at -5.0 volts with V_{CC} and $\mathrm{V}_{\mathrm{OPT}}$ tied together at +5.0 volts.

Lead-Free, SOIC-16 ${ }^{\dagger}$

[^1]
Die Outline

Pad Configuration ${ }^{17,18}$
Die Size: $1325 \times 1735 \mu \mathrm{~m}$ (nominal)

Pad No.	$\mathbf{X}(\boldsymbol{\mu m})$ nominal	$\mathbf{Y}(\boldsymbol{\mu m})$ nominal	Pad Size ($\boldsymbol{\mu m} \mathbf{)}$ $\mathbf{X \times Y}$	Pad Function
0	0	0	Lower left edge of die	N/A
1	482.95	1489	85×85	Vee
2	217.85	1534.6	85×85	Vcc
3	200.45	1407.9	85×85	C4
4	200.45	1114.2	85×85	C3
5	200.45	820.45	85×85	C2
6	200.45	526.8	85×85	C1
7	200.45	229.35	85×85	Vopt
8	395.6	157.95	85×85	GND
9	777.55	181.5	132×94	A1
10	1126.35	181.75	132×94	B1
11	1126.35	436.85	132×94	A2
12	1126.35	691.95	132×94	B2
13	1126.35	947.05	132×94	A3
14	1126.35	1202.15	132×94	B3
15	1126.35	1457.3	132×94	A4
16	767.9	1553.5	132×94	B4
17	1325	1735	Upper right edge of die	N/A

17. All X, Y dimensions are at bond pad center.
18. Die thickness is 8.0 mils.

Quad Driver for GaAs FET or PIN Diode
Switches and Attenuators

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
89076GBEST 00053P0231 $56956 \underline{57.404 .7355 .5} \underline{\text { LT4936 } 57.904 .0755 .05882900001 \text { 00600P0005 00-9050-LRPP 00-9090-RDPP }}$ 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275-RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 02071000000207400000 $01312 \underline{0134220000} \underline{60713816}$ M15730061 61161-90 61278-0020 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

[^1]: ${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations. Plating is 100% matte tin over copper.

