Features

- 20 V-250 V Back Bias in Off State
- 200 mA Series Diode Bias Current @ $+25^{\circ} \mathrm{C}$
- 50 mA Shunt Diode Bias Current @ $+25^{\circ} \mathrm{C}$
- Propagation Delay $<8 \mu \mathrm{~s}$
- Low Quiescent Current Consumption
- 3 V or 5 V CMOS Logic Control
- 7 mm QFN-16LD Package
- Tape and Reel Packaging Available
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Applications

- Aerospace \& Defense
- ISM

Description

The MADR-010574 switch driver is designed to work with MACOMs high power and high voltage PIN diodes. This driver consists of two independently controlled drivers which are able to provide 200 mA series / 50 mA shunt current to a series / shunt, SPDT PIN diode switch. The back bias voltage is configurable from 20 V to 250 V . High voltage level shifters are integrated so that it can be easily controlled by 3 V or 5 V CMOS logic. While consuming low quiescent current, this driver has a typical delay of $<8 \mu \mathrm{~s}$ when driving 220 pF capacitor load. If needed, the switching speed can be improved by consuming more quiescent power.

This driver is packaged in a lead free 7 mm PQFN16LD package and is available in tape and reel packaging for high volume applications.

Ordering Information

Part Number	Package
MADR-010574-000100	Bulk Packaging
MADR-010574-0001TR	1000 piece Reel
MADR-010574-001SMB	 MA4P504-1072T Diodes

Functional Schematic

Pin Configuration ${ }^{1}$

Pin \#	Pin Name	Description
1	SH1	Shunt1
2	C1	Control Logic 1
3	I BIAS	Bias Voltage
4	SER1	Series1
5,8	N/C 2	No Connection
$6,7,13,14,15$	GND	Ground
9	SH2	Shunt2
10	VCC	Control Voltage
11	C2	Control Logic 2
12	SER2	Series2
16	VDD	Drain Voltage
17	Paddle	Ground

1. The paddle of the QFN package should be tied to ground.
2. N/C pins (except pin 15) can be grounded. The clearance from high voltage pins should be at least 0.8 mm . Pin 15 must be left open.
[^0]
Recommended Operating Conditions

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
V_{cc}	Nominal $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ Nominal $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	V	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 5.5 \end{aligned}$
$V_{D D}$	-	V	20	-	250
Control1, Control2 ${ }^{3}$	Logic "0" Logic "1"	V	$\begin{gathered} 0.0 \\ 0.7 \times \mathrm{V}_{\mathrm{CC}} \end{gathered}$	$\begin{aligned} & 0.0 \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{gathered} 0.3 \times V_{\mathrm{cc}} \\ V_{\mathrm{Cc}} \end{gathered}$
Series1/Series2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 300 \\ & 200 \\ & 150 \end{aligned}$
Shunt1/Shunt2 Sinking Current ${ }^{4}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	mA	-	-	$\begin{aligned} & 65 \\ & 55 \\ & 50 \end{aligned}$
$\mathrm{IBIAS}^{5,6}$	$+25^{\circ} \mathrm{C}$	$\mu \mathrm{A}$	2	6	150
Operating Temperature	-	${ }^{\circ} \mathrm{C}$	-40	+25	+85

3. Unused Controls should be either grounded or connected to V_{cc}. They should never be left open.
4. Refer to "Application Circuit: Driving SPDT Switch with MA4P504-1072T Pin Diodes" for configuration of diode bias currents.
5. This sinking bias current is necessary for normal driver operation. The easiest way is to connect a 0402 resistor $R_{\text {BIAS }}$ between Pin $V_{C C}$ and Pin $I_{\text {BIAS }}$. Then $I_{\text {BIAS }}$ can be calculated by: $I_{\text {BIAS }}=\left(\mathrm{V}_{\mathrm{CC}}-0.6\right) /\left(500+\mathrm{R}_{\mathrm{BIAS}}\right)$.
6. Refer to graph "Typ. Ton Driving 220 pF Capacitance vs. $I_{\text {BIAS }}$ " on page 3 and the chart "Typ. $I_{D D}$ vs. $I_{\text {BIAS }}$ at $25^{\circ} \mathrm{C}$ " on page 4 for the tradeoff between switching speed and power consumption.

Absolute Maximum Ratings ${ }^{7,8}$

Parameter	Absolute Maximum
$\mathrm{V}_{\text {cc }}$	-0.5 V to +7 V
$V_{\text {DD }}$	-0.5 V to 275 V
C1, C2 (Logic)	-0.5 V to 7 V
$\begin{gathered} \text { Series1/Series2 Sinking Current } \\ -40^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{gathered}$	550 mA 450 mA 350 mA
$\begin{gathered} \text { Shunt1/Shunt2 Sinking Current } \\ -40^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +85^{\circ} \mathrm{C} \end{gathered}$	150 mA 150 mA 100 mA
Series/Shunt Outputs Sourcing Current	25 mA
$\mathrm{I}_{\text {BIAS }}$	$500 \mu \mathrm{~A}$
ESD HBM Rating	$>1 \mathrm{kV}$
Operating Temperature	-40 to $+125^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$

7. MACOM does not recommend sustained operation near these survivability limits.
8. Exceeding any one or combination of these limits may cause permanent damage to this device.

Truth Table ${ }^{9}$

C1	C2	Series1	Shunt1	Series2	Shunt2
0	0	Low	High	Low	High
0	1	Low	High	High	Low
1	0	High	Low	Low	High
1	1	High	Low	High	Low

9. The actual voltage levels for "Low" and "High" are dependent on the current load to the driver. They can be estimated from the driver on resistance.

Powering On/Off Sequence:

$V_{D D}$ should be turned on after $V_{C c}$, and the rise time of $V_{D D}$ should be slower than $2.5 \mu \mathrm{~s}$. When powering off, V_{DD} should be turned off before V_{CC}.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=6 \mu \mathrm{~A}^{10}$

Parameter	Test Conditions	Unit	Min.	Typ.	Max.
Quiescent Supply Currents	$\begin{aligned} & V_{C C}(3.3 \mathrm{~V})^{11} \\ & V_{D D}(250 \mathrm{~V}) \end{aligned}$	$\mu \mathrm{A}$	-	$\begin{gathered} 6 \\ 25 \end{gathered}$	$\begin{aligned} & 10 \\ & 37 \end{aligned}$
Control Input Leakage Current	-	$\mu \mathrm{A}$	-	-	1
Series Pull-down FET On Resistance	200 mA Load	Ω	-	9	11.4
Shunt Pull-down FET On Resistance	50 mA Load	Ω	-	26	30
Switching Speed Driving 220 pF Caps: Series ${ }^{12}$ Ton Toff Tr Tf	50% CTL to 95% Voltage 50\% CTL to 5\% Voltage $\begin{aligned} & 10 \%-90 \% \\ & 90 \%-10 \% \end{aligned}$	$\mu \mathrm{s}$	-	$\begin{gathered} 6.2 \\ 0.22 \\ 5.1 \\ 0.1 \end{gathered}$	-
Switching Speed Driving 220 pF Caps: Shunt ${ }^{12}$ Ton TofF Tr Tf	50\% CTL to 95\% Voltage 50\% CTL to 5\% Voltage $\begin{aligned} & 10 \%-90 \% \\ & 90 \%-10 \% \end{aligned}$	$\mu \mathrm{s}$	-	$\begin{gathered} 3.1 \\ 0.2 \\ 2.6 \\ 0.08 \end{gathered}$	-

10. The parameters were measured with $500 \mathrm{k} \Omega R_{\text {BIAS }}$ connecting between pin V_{CC} and pin $\mathrm{I}_{\mathrm{BIAS}}$.
11. $\mathrm{I}_{\mathrm{BIAS}}$ is included in the quiescent V_{CC} current due to the bias configuration.
12. Switching parameters were measured driving 220 pF capacitors with no current load. Controls C 1 and C 2 were tied together. It will be faster when C2 is inverted from C1, which is case driving a SPDT switch.

Typ. Ton Driving 220pF Caps vs VDD

$$
\text { VCC }=3.3 \mathrm{~V} \text {, IBIAS }=6 \mu \mathrm{~A}, 25^{\circ} \mathrm{C}
$$

Performance Driving MACOM MA4P504-1072T PIN Diode SPDT Switch ${ }^{13}$

Typ. Ton (50\% Ctl to 90\% RF) VDD $=250 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS $=6 \mu \mathrm{~A}$

Typ. Ton (50\% Ctl to 90\% RF) vs. VDD
$\mathrm{VCC}=3.3 \mathrm{~V}$, IBIAS=6 $\mu \mathrm{A}$
Iseries $=200 \mathrm{~mA}$, Ishunt=50mA

Typ. IDD vs IBIAs at $25^{\circ} \mathrm{C}$

Typ. Toff (50\% Ctl to 10\% RF)
VDD $=250 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{IBIAS}=6 \mu \mathrm{~A}$

Typ. Toff (50\% Ctl to 10\% RF) vs. VDD $\mathrm{VCC}=3.3 \mathrm{~V}, I_{\text {BIAs }}=6 \mu \mathrm{~A}$
Iseries $=200 \mathrm{~mA}$, Ishunt=50mA

13. The switch is a series/shunt, series/shunt SPDT switch using four MACOM MA4P504-1072T PIN diodes. Schematic is on next page. Switching parameters were measured with 500 MHz 20 W CW RF signal.

Application Circuit: Driving SPDT Switch with MA4P504-1072T PIN Diodes ${ }^{14}$

14. This is the schematic of MADR-010547-001SMB. The frequency range for this application circuit is 200 MHz to 500 MHz . The bias current for the series diodes is 200 mA . The bias current for the shunt diodes is 50 mA . The recommended inductors are Coil Craft 0603LS-181XJLB for both current and frequency considerations. For different frequency applications, both capacitors and inductors should be adjusted accordingly.

Recommended PCB

Parts List

Part	Value	Size
C5	$0.01 \mu \mathrm{~F}, 500 \mathrm{~V}$	0805
C6 - C12	$100 \mathrm{pF}, 500 \mathrm{~V}$	0805
C13 - C15	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$	0402
L1 - L8	180 nH	0603
R1	$1.5 \Omega, 1 \mathrm{~W}$	2512
R2	$15 \Omega, 0.5 \mathrm{~W}$	1206
R3	$499 \mathrm{~K} \Omega, 1 / 16 \mathrm{~W}$	0402
U2	SN74AHC1G	
D1 - D4	MA4P504-1072	

Footprint

Lead Free 7mm PQFN-16LD ${ }^{\dagger}$

[^1]
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for PIN Diodes category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MA45471 MA4SPS502 APD2220-000 APD0810-000 MA4GP907 MA4L032-186 MA4L401-30 MA4P606-258 MA4P7435NM-1091T MA4PK2000 MA4PK2001 MA4PK2004 MADP-007167-12250T MADP-030025-13140P MA4SPS421 MA4PBL027 MA4P404-30 MA4AGFCP910 MA4P7101F-1072T MA4L022-30 MA47047-54 BAR 89-02LRH E6327 UM7108B UM9701 1SV308,L3F UM9301SM 5082-3077 GC4723-42 MA4L011-1088 MSW2001-200 SMP1321-000 M17X1008 UM4010SM UM6002B UM7006A UM7006B UM7108C GC4742-42 MADP-000015-000030 MGPN1503-C01A UMX512 LXP1000-23-2 LXP1004-23-2 MPP4205A-206 MPP4201-206 LXP1002-23-0 LXP1004-23-0 MPP4202-206 MPP4205-206 MPC8050-206

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: ${ }^{\dagger}$ This is not a JEDEC standard package. Please refer to Application Note for footprint and lead-free solder reflow recommendations.

