GaN on SiC HEMT Pulsed Power Transistor

$15 \mathrm{~W}, \mathrm{DC}-3.5 \mathrm{GHz}$

Features

- GaN on SiC Depletion Mode Transistor

MAGX-000035-015000 (Flanged)

- Common-Source Configuration
- Broadband Class AB Operation
- Thermally Enhanced Package (Flanged: Cu/W, Flangeless: Cu)
- RoHS* Compliant
- +50V Typical Operation
- MTTF $=600$ years $\left(\mathrm{T}_{J}<200^{\circ} \mathrm{C}\right)$

Primary Applications

- Commercial Wireless Infrastructure (WCDMA, LTE, WiMAX)
- Air Traffic Control Radar - Commercial
- Weather Radar - Commercial
- Military Radar - Military
- Public Radio
- Industrial, Scientific and Medical
- SATCOM
- Instrumentation

Description

The MAGX-000035-01500X is a gold-metalized unmatched Gallium Nitride (GaN) on Silicon Carbide RF power transistor suitable for a variety of RF power amplifier applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, and ruggedness over multiple octave bandwidths for today's demanding application needs.

The MAGX-000035-01500X is constructed using a thermally enhanced flanged (Cu/W) or flangeless (Cu) ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

MAGX-000035-01500S (Flangeless)

Ordering Information

Part Number	Description
MAGX-000035-015000	Flanged, Bulk Packaging
MAGX-000035-01500S	Flangeless, Bulk Packaging
MAGX-L20035-015000	Sample Board $(1.2-1.4 \mathrm{GHz}$, Flanged $)$
MAGX-L20035-01500S	Sample Board $(1.2-1.4 \mathrm{GHz}$, Flangeless $)$

[^0]
MAGX-000035-015000
 MAGX-000035-01500S

GaN on SiC HEMT Pulsed Power Transistor

$15 \mathrm{~W}, \mathrm{DC}$ - 3.5 GHz

Electrical Specifications ${ }^{1}$: Freq. $=1.2$-1.4 GHz, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
RF Functional Tests: $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=15 \mathrm{~mA}, 1 \mathrm{~ms}$ Pulse, 10\% Duty						
Output Power	$\mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$	Pout	15.0	17.7	-	W
Power Gain	$\mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$	G_{p}	14.8	15.5	-	dB
Drain Efficiency	$\mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$	η_{D}	55	63	-	\%
Droop	$\mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$	Droop	-	0.1	0.4	dB
Load Mismatch Stability	$\mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	$\mathrm{P}_{\mathrm{IN}}=0.5 \mathrm{~W}$	VSWR-T	-	10:1	-	-

Electrical Characteristics: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	$V_{G S}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=175 \mathrm{~V}$	l_{DS}	-	-	750	$\mu \mathrm{A}$
Gate Threshold Voltage	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	$\mathrm{V}_{\text {GS (TH) }}$	-5	-3	-2	V
Forward Transconductance	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$	G_{M}	0.35	-	-	S
Dynamic Characteristics						
Input Capacitance	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {Iss }}$	-	4.4	-	pF
Output Capacitance	$V_{D S}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	Coss	-	1.9	-	pF
Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {RSS }}$	-	0.2	-	pF

Correct Device Sequencing

Turning the device ON

1. Set V_{GS} to the pinch-off (V_{P}), typically -5 V .
2. Turn on V_{DS} to nominal voltage (+50 V).
3. Increase $V_{G S}$ until the $I_{D S}$ current is reached.
4. Apply RF power to desired level.

Turning the device OFF

1. Turn the RF power off.
2. Decrease V_{GS} down to V_{P}.
3. Decrease V_{DS} down to 0 V .
4. Turn off V_{Gs}.

GaN on SiC HEMT Pulsed Power Transistor
$15 \mathrm{~W}, \mathrm{DC}$ - 3.5 GHz
Absolute Maximum Ratings ${ }^{2,3,4}$

Parameter	Absolute Max.
Input Power	PiN (nominal) +3 dB
Drain Supply Voltage, V_{DD}	+65 V
Gate Supply Voltage, V_{GG}	-8 V to 0 V
Supply Current, $\mathrm{IDD}^{\text {d }}$	800 mA
Power Dissipation ($\mathrm{Pavg}^{\text {) , Pulsed }}$ @ $85^{\circ} \mathrm{C}$	10.3 W
MTTF ($\mathrm{T}_{3}<200^{\circ} \mathrm{C}$)	600 years
Junction Temperature ${ }^{5}$	$200^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Mounting Temperature	See solder reflow profile
ESD Min. - Charged Device Model (CDM)	150 V
ESD Min. - Human Body Model (HBM)	500 V

2. Operation of this device above any one of these parameters may cause permanent damage.
3. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.
4. For saturated performance it is recommended that the sum of $\left(3^{*} \mathrm{~V}_{\mathrm{DD}}+\mathrm{abs}\left(\mathrm{V}_{\mathrm{GG}}\right)\right)<175 \mathrm{~V}$.
5. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta_{J C} *\left((V * I)-\left(P_{\text {out }}-P_{\text {IN }}\right)\right)$

Typical transient thermal resistances:
1 ms pulse, 10% duty cycle, $\Theta_{\mathrm{Jc}}=5.0^{\circ} \mathrm{C} / \mathrm{W}$
For $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$,
$\mathrm{T}_{\mathrm{J}}=132^{\circ} \mathrm{C} @ 50 \mathrm{~V}, 520 \mathrm{~mA}-\mathrm{pk}, \mathrm{P}_{\text {OUt }}=17.0 \mathrm{~W}, \mathrm{P}_{\text {IN }}=0.5 \mathrm{~W}$

MAGX-000035-015000
 MAGX-000035-01500S

GaN on SiC HEMT Pulsed Power Transistor
$15 \mathrm{~W}, \mathrm{DC}$ - 3.5 GHz
Rev. V1
Test Fixture Assembly (1.2-1.4 GHz, 1 ms Pulse, 10\% Duty, $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$, Idq $=15 \mathrm{~mA}$)

Parts List

Reference Designator	Part	Vendor
C4	$0402,5.1 \mathrm{pF}, \pm 0.1 \mathrm{pF}$	ATC
C15	$0603,6.8 \mathrm{pF}, \pm 0.1 \mathrm{pF}$	ATC
C2	$0603,82 \mathrm{pF}, \pm 10 \%$	ATC
C16	$0603,100 \mathrm{pF}, \pm 10 \%$	ATC
C1, C10	$0402,1000 \mathrm{pF}, 100 \mathrm{~V}, 5 \%$	ATC
C8	$0603,30 \mathrm{pF}, \pm 10 \%$	ATC
C13	$0805,1 \mu \mathrm{~F}, 100 \mathrm{~V}, \pm 20 \%$	ATC
C14	$0402,12 \mathrm{pF}, \pm 10 \%$	ATC
C17	$100 \mu \mathrm{~F}, 160 \mathrm{~V}$, Electrolytic Capacitor	Panasonic
C3, C6, C7, C9, C11, C12, R2	Do Not Populate	
R3	$240 \Omega, 0603,5 \%$	Panasonic
L1, R1	$1.0 \Omega, 0402,5 \%$	Panasonic
R4	$1.0 \Omega, 1206,5 \%$	Panasonic
R5	$10 \Omega, 0402,5 \%$	Panasonic
L3, L6	$0402,3.9 \mathrm{nH}, 2 \%$	Coilcraft
L2, R6	$0402,0.0 \Omega$ Resistor	Panasonic
J1, J2	SMA Connector	Tyco Electronics

MAGX-000035-015000
 MAGX-000035-01500S

GaN on SiC HEMT Pulsed Power Transistor
15 W, DC - 3.5 GHz

Application Section

Typical Performance Curves

1.2-1.4 GHz, 1 ms Pulse, 10% Duty, $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$, Idq $=15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output Power and Gain Vs. Input Power

Drain Efficiency Vs. Output Power

GaN on SiC HEMT Pulsed Power Transistor
$15 \mathrm{~W}, \mathrm{DC}-3.5 \mathrm{GHz}$

Outline Drawing MAGX-000035-015000 (Flanged)

GaN on SiC HEMT Pulsed Power Transistor
$15 \mathrm{~W}, \mathrm{DC}-3.5 \mathrm{GHz}$

Outline Drawing MAGX-000035-01500S (Flangeless)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF JFET Transistors category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
CE3514M4 CE3514M4-C2 CE3520K3-C1 CE3521M4 CE3521M4-C2 CE3512K2-C1 CE3520K3 CG2H80030D-GP4 TGF2023-2-02 NPT1004D MAGX-011086 NPT25015D JANTXV2N4858 CGHV27015S NPT2021 NPTB00025B TGF2965-SM QPD1009 QPD1010 2SK3557-6-TB-E J211_D74Z NPTB00004A MMBFJ211 QPD0005TR13 QPD0020 QPD1006 QPD1016 QPD1025L QPD1029L

QPD1881L T2G6001528-Q3 SKY65050-372LF J304 CGH27015F CGH27060F CGH55015F1 CMPA801B030F GTVA262711FA-V2-R0 GTVA262701FA-V2-R0 CGH40006S CGH40010F CGH40025F CGH40045F CGH40120F CGH40180PP CGH55015F2 CGH60008D CGH60030D CGHV14500F CGHV1F006S

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

