

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Features

- GaN on SiC Depletion Mode Transistor
- Common-Source Configuration
- Broadband Class AB Operation
- Thermally Enhanced Package (Flanged: Cu/W, Flangeless: Cu)
- RoHS* Compliant
- +50V Typical Operation
- MTTF = 600 years (T_J < 200°C)

Primary Applications

- Commercial Wireless Infrastructure (WCDMA, LTE, WiMAX)
- Air Traffic Control Radar Commercial
- Weather Radar Commercial
- Military Radar Military
- Public Radio
- Industrial, Scientific and Medical
- SATCOM
- Instrumentation

Description

The MAGX-000035-01500X is a gold-metalized unmatched Gallium Nitride (GaN) on Silicon Carbide RF power transistor suitable for a variety of RF power amplifier applications. Using state of the art wafer fabrication processes, these high performance transistors provide high gain, efficiency, bandwidth, and ruggedness over multiple octave bandwidths for today's demanding application needs.

The MAGX-000035-01500X is constructed using a thermally enhanced flanged (Cu/W) or flangeless (Cu) ceramic package which provides excellent thermal performance. High breakdown voltages allow for reliable and stable operation in extreme mismatched load conditions unparalleled with older semiconductor technologies.

MAGX-000035-015000 (Flanged)

MAGX-000035-01500S (Flangeless)

Ordering Information

Part Number	Description		
MAGX-000035-015000	Flanged, Bulk Packaging		
MAGX-000035-01500S	Flangeless, Bulk Packaging		
MAGX-L20035-015000	Sample Board (1.2 - 1.4 GHz, Flanged)		
MAGX-L20035-01500S	Sample Board (1.2 - 1.4 GHz, Flangeless)		

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Electrical Specifications¹: Freq. = 1.2 - 1.4 GHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
RF Functional Tests: V _{DD} = 50 V, I _{DQ} = 15 mA, 1 ms Pulse, 10% Duty						
Output Power	P _{IN} = 0.5 W	P _{OUT}	15.0	17.7	-	W
Power Gain	P _{IN} = 0.5 W	G_{P}	14.8	15.5	-	dB
Drain Efficiency	P _{IN} = 0.5 W	η_{D}	55	63	-	%
Droop	P _{IN} = 0.5 W	Droop	-	0.1	0.4	dB
Load Mismatch Stability	P _{IN} = 0.5 W	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	P _{IN} = 0.5 W	VSWR-T	-	10:1	-	-

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	-	-	750	μA
Gate Threshold Voltage	$V_{DS} = 5 \text{ V}, I_{D} = 2 \text{ mA}$	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 500 mA	G_{M}	0.35	-	-	S
Dynamic Characteristics						
Input Capacitance	$V_{DS} = 0 \text{ V}, \ V_{GS} = -8 \text{ V}, \text{ F} = 1 \text{ MHz}$	C _{ISS}	-	4.4	-	pF
Output Capacitance	$V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$	Coss	-	1.9	-	pF
Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$	C _{RSS}	-	0.2	-	pF

Correct Device Sequencing

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (+50V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}

^{1.} Electrical Specifications measured in MACOM RF evaluation board.

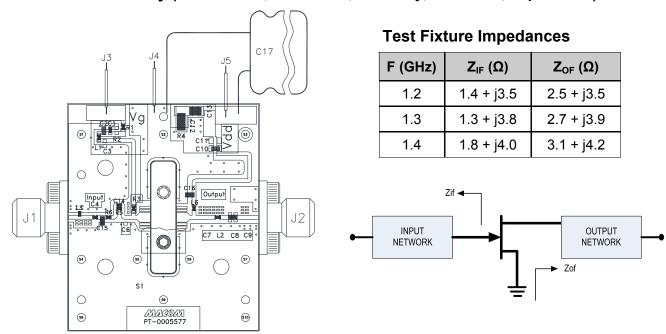
GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Absolute Maximum Ratings^{2,3,4}

Parameter	Absolute Max.	
Input Power	P _{IN} (nominal) + 3 dB	
Drain Supply Voltage, V _{DD}	+65 V	
Gate Supply Voltage, V _{GG}	-8 V to 0 V	
Supply Current, I _{DD}	800 mA	
Power Dissipation (P _{AVG}), Pulsed @ 85°C	10.3 W	
MTTF (T _J <200°C)	600 years	
Junction Temperature ⁵	200°C	
Operating Temperature	-40°C to +95°C	
Storage Temperature	-65°C to +150°C	
Mounting Temperature	See solder reflow profile	
ESD Min Charged Device Model (CDM)	150 V	
ESD Min Human Body Model (HBM)	500 V	

- 2. Operation of this device above any one of these parameters may cause permanent damage.
- 3. Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.
- 4. For saturated performance it is recommended that the sum of $(3*V_{DD} + abs(V_{GG})) < 175 \text{ V}$.
- 5. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) (P_{OUT} P_{IN}))$


Typical transient thermal resistances: 1 ms pulse, 10% duty cycle, Θ_{JC} = 5.0°C/W For T_C = 85°C, T_J = 132°C @ 50 V, 520 mA-pk, P_{OUT} = 17.0 W, P_{IN} = 0.5 W

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Test Fixture Assembly (1.2 - 1.4 GHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 15 mA)

Parts List

Reference Designator	Part	Vendor
C4	0402, 5.1 pF, ±0.1 pF	ATC
C15	0603, 6.8 pF, ±0.1 pF	ATC
C2	0603, 82 pF, ±10%	ATC
C16	0603, 100 pF, ±10%	ATC
C1, C10	0402, 1000 pF, 100 V, 5%	ATC
C8	0603, 30 pF, ±10%	ATC
C13	0805, 1 μF, 100 V, ±20%	ATC
C14	0402, 12 pF, ±10%	ATC
C17	100 μF, 160 V, Electrolytic Capacitor	Panasonic
C3, C6, C7, C9, C11, C12, R2	Do Not Populate	-
R3	240 Ω, 0603, 5%	Panasonic
L1, R1	1.0 Ω, 0402, 5%	Panasonic
R4	1.0 Ω, 1206, 5%	Panasonic
R5	10 Ω, 0402, 5%	Panasonic
L3, L6	0402, 3.9 nH, 2%	Coilcraft
L2, R6	0402, 0.0 Ω Resistor	Panasonic
J1, J2	SMA Connector	Tyco Electronics

⁴ Contact factory for Gerber file or additional circuit information.

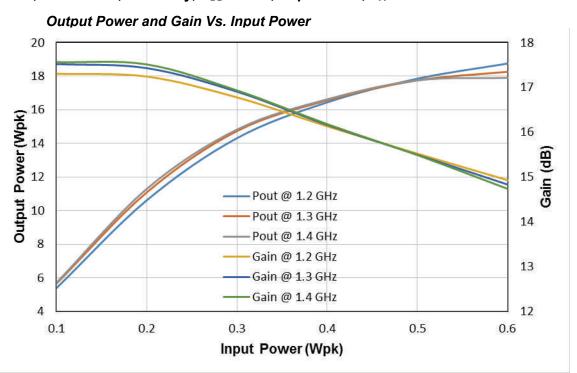
M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

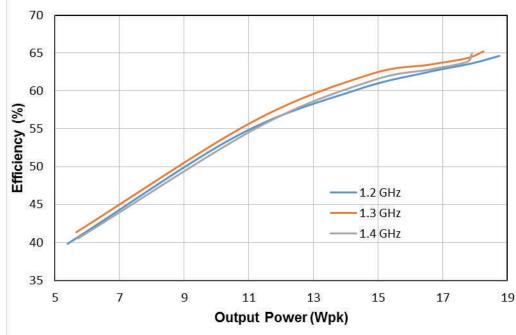
North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1


Application Section

Typical Performance Curves

1.2 - 1.4 GHz, 1 ms Pulse, 10% Duty, V_{DD} = 50 V, Idq = 15 mA, T_A = 25°C

Drain Efficiency Vs. Output Power

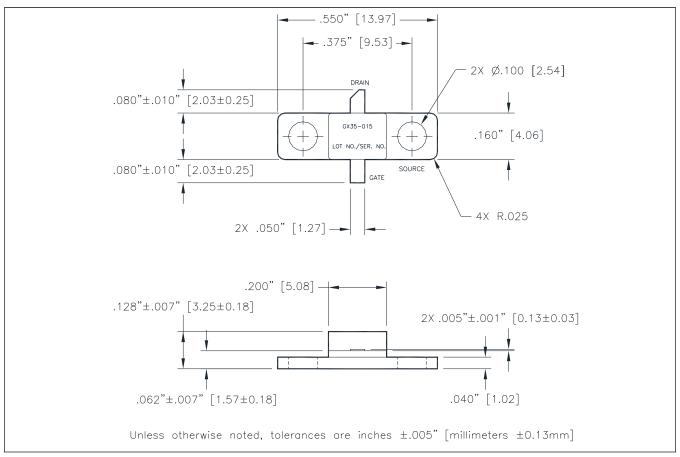
5

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macomtech.com for additional data sheets and product information.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

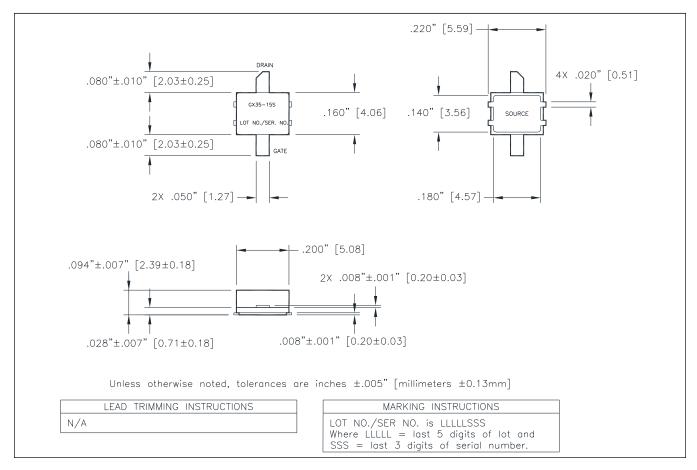
Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300


[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Outline Drawing MAGX-000035-015000 (Flanged)



GaN on SiC HEMT Pulsed Power Transistor 15 W, DC - 3.5 GHz

Rev. V1

Outline Drawing MAGX-000035-01500S (Flangeless)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC252AQS24 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL01-HMC1048LC3B

EVAL01-HMC661LC4B EVAL-ADF7020-1DBZ4 EVAL-ADF7020-1DBZ5 EVAL-ADF7020-1DBZ6 EVAL-ADF7021DB9Z EVAL
ADF7021DBJZ EVAL-ADF7021DBZ2 EVAL-ADF7021DBZ6 EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z

EVAL-ADF7023-JDB3Z EVAL-ADF70XXEKZ1 EVAL-ADF7241DB1Z EVAL-ADG919EBZ F0440EVBI F1423EVB-DI F1423EVB-SI

F1701EVBI F1751EVBI F2250EVBI MICRF219A-433 EV MICRF220-433 EV 122410-HMC686LP4E AD6679-500EBZ 126223
HMC789ST89E ADL5363-EVALZ ADL5369-EVALZ 130437-HMC1010LP4E 131352-HMC1021LP4E 131372-HMC951LP4E 130436
HMC1010LP4E EKIT01-HMC1197LP7F Si4705-D60-EVB SI4825-DEMO Si4835-Demo LMV228SDEVAL SKYA21001-EVB SMP1331
08-EVB EV1HMC618ALP3 EV1HMC641ALC4 EV1HMC8410LP2F EVAL_PAN4555ETU EVAL01-HMC1041LC4