## Features

- High Power SPDT Switch and 2-Stage LNA
- Broadband: 1-6 GHz
- No External Matching Components Required
- RX Mode Gain:
$35.0 \mathrm{~dB} @ 2.50 \mathrm{GHz}$
34.5 dB @ 3.75 GHz 33.5 dB @ 4.50 GHz
- RX Mode Noise Figure:
1.2 dB @ 2.50 GHz
1.3 dB @ 3.75 GHz
1.5 dB @ 4.50 GHz
- TX Mode at 2.3-5.0 GHz: Insertion Loss: 0.4 dB P0.1dB: 40.5 dBm
- Single $5 \vee$ Bias
- Low DC Current: 78 mA in RX Mode
- Integrated Control Circuitry with 1.8 V Logic
- Lead-Free 6 mm 20 Lead QFN Package
- HBM ESD Class 1C
- RoHS* Compliant


## Description

The MAMF-011119 is a compact surface mount, highly integrated high power SPDT switch and 2-stage low noise amplifier (LNA) module. It includes an antenna switch and a LNA in a compact 6 mm QFN package. All the bias circuitry and matching components are internal to the module.
This module operates from 1-6 GHz and features high power handling, low noise figure, high linearity and low power consumption. The module requires a single 5 V supply and the $\mathrm{T} / \mathrm{R}$ switch is 1.8 V CMOS compatible.
The MAMF-011119 is ideally suited for 5G Massive MIMO, Small Cell BTS, or other TDD-based communication systems.

Ordering Information ${ }^{1,2}$

| Part \# | Package |
| :---: | :---: |
| MAMF-011119-TR1000 | 1000 piece reel |
| MAMF-011119-TR3000 | 3000 piece reel |
| MAMF-011119-001SMB | Sample Board |

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

## Functional Schematic



## Pin Configuration ${ }^{3}$

| Pin \# | Pin Name | Description |
| :---: | :---: | :---: |
| $1,3-5,7,9-13$, <br> $15,16,18,20$ | GND | Ground |
| 2 | ANT | RF Antenna Port |
| 6 | N/C | Internally No Connect |
| 8 | VDD | Supply Voltage |
| 14 | RXOUT | RX Output Port |
| 17 | T/R | Logic Signaling Pin |
| 19 | TERM | Termination Port |
| 21 | Paddle $^{4}$ | Ground |

3. MACOM recommends connecting GND and No Connection (N/C) pins to ground.
4. The exposed paddle centered on the package bottom must be connected to RF, DC \& thermal ground.
[^0]AC Electrical Specifications (RX Mode)
$P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gain | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz | dB | 32 | $\begin{aligned} & 35.0 \\ & 34.5 \end{aligned}$ | 37 |
| Input IP3 | $P_{\text {in }} /$ tone $=-33 \mathrm{dBm}$, Tone Delta $=2 \mathrm{MHz}$, ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz | dBm | - | $\begin{aligned} & -6 \\ & -4 \\ & \hline \end{aligned}$ | - |
| Input P1dB | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz | dBm | -20 | $\begin{aligned} & -18 \\ & -17 \end{aligned}$ | - |
| Noise Figure | ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz | dB | - | $\begin{aligned} & 1.2 \\ & 1.3 \end{aligned}$ | - |
| ANT Port Return Loss | ANT Port, 2.5 GHz ANT Port, 3.75 GHz | dB | - | $\begin{aligned} & \hline 17 \\ & 21 \end{aligned}$ | - |
| RXOUT Port Return Loss | RXOUT Port, 2.5 GHz RXOUT Port, 3.75 GHz | dB | - | $\begin{aligned} & 21 \\ & 24 \end{aligned}$ | - |
| Reverse Isolation | RXOUT to ANT, 2.5 GHz RXOUT to ANT, 3.75 GHz | dB | - | $\begin{aligned} & 51 \\ & 50 \end{aligned}$ | - |

## AC Electrical Specifications (TX Mode)

$P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | ANT to TERM, 2.5 GHz ANT to TERM, 3.75 GHz | dB | - | $\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$ | 1.0 |
| P0.1dB Compression Point | ANT to TERM, 2.5 GHz ANT to TERM, 3.75 GHz | dBm | - | $\begin{aligned} & 40.5 \\ & 40.5 \end{aligned}$ | - |
| ANT Port Return Loss | ANT Port, 2.5 GHz ANT Port, 3.75 GHz | dB | - | $\begin{aligned} & 22 \\ & 25 \end{aligned}$ | - |
| TERM Port Return Loss | TERM Port, 2.5 GHz TERM Port, 3.75 GHz | dB | - | $\begin{aligned} & 21 \\ & 25 \end{aligned}$ | - |
| ANT Port Input Power | ANT Port, $2.5 \mathrm{GHz}, \mathrm{CW}, \mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$ <br> ANT Port, $2.5 \mathrm{GHz}, \mathrm{LTE}$ (8dB PAR), $\mathrm{T}_{\mathrm{C}}=105^{\circ} \mathrm{C}$ | dBm | - | $\begin{aligned} & 39 \\ & 36 \end{aligned}$ | - |

Transient Electrical Specifications
Freq. $=2.5 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. |
| :---: | :---: | :---: | :---: | :---: |
| T/R Gain Settling Time | ANT to RXOUT gain settling time within <br> 0.3 dB of final value after T/R command | $\mu \mathrm{s}$ | - | 0.3 |
| T/R Insertion Loss Settling Time | ANT to TERM path insertion loss settling <br> time within 0.3 dB of final value after T/R <br> command | $\mu \mathrm{s}$ | - | 0.3 |
| Power on Gain Settling Time | ANT to RXOUT gain settling time within <br> 0.5 dB of final value after DC power on | ms | - | - |
| Power on Insertion Loss Settling Time | ANT to TERM settling time within 0.5 dB <br> of final value after DC power on | ms | - | 1 |

## DC Electrical Specifications

$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | - | V | 4.75 | 5 | 5.25 |
| Supply Current | RX Mode | mA | - | 78 | - |
| T/R Control Voltage | TX Mode | V | 1.073 | - | 2.5 |
|  | RX Mode, Logic High | -0.3 | - | 0.683 |  |
| T/R Logic Input Current | TX Mode, Logic Low | $\mu \mathrm{A}$ | - | 40 | - |

## Control Truth Table

| T/R Control |  |
| :---: | :---: |
| RX Mode | Logic High |
| TX Mode | Logic Low or Open |

Absolute Maximum Ratings ${ }^{5,6}$

| Parameter | Absolute Maximum |
| :---: | :---: |
| Antenna Input Power ${ }^{7}$ Freq. $=2.5 \mathrm{GHz}$ : RX Mode TX Mode | 17 dBm LTE ( 8 dB PAR), 20 dBm CW 39 dBm LTE ( 8 dB PAR), 42 dBm CW |
| DC Voltages: <br> $V_{D D}$, ANT \& TERM T/R \& RXOUT | $\begin{gathered} -0.5 \text { to }+5.5 \mathrm{~V} \\ -0.5 \text { to }+2.75 \mathrm{~V} \end{gathered}$ |
| Junction Temperature: $\begin{aligned} & \text { RX Mode }{ }^{8,10} \\ & \text { TX Mode, } \\ & \text { TX Mode } \end{aligned}$ | $\begin{aligned} & +150^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & +140^{\circ} \mathrm{C} \end{aligned}$ |
| Operating Temperature ${ }^{9}$ | $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ |
| Storage Temperature | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

5. Exceeding any one or combination of these limits may cause permanent damage to this device.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Single event, up to 10 seconds duration.
8. Operating at nominal conditions with $T_{j} \leq+150^{\circ} \mathrm{C}$ ( RX Mode) and $\mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ (TX Mode) will ensure MTTF $\gg 1 \times 10^{6}$ hours.
9. Operating/Case temperature $\left(T_{C}\right)$ is the temperature of the exposed paddle.
10. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta_{J C} * P_{D I S s}$ where $P_{D I S S}$ is the total DC \& RF dissipated power.

- RX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=33.4^{\circ} \mathrm{C} / \mathrm{W}$.
- TX Mode: Typical thermal resistance $\left(\Theta_{\mathrm{Jc}}\right)=9.8^{\circ} \mathrm{C} / \mathrm{W}$.


## Handling Procedures

Please observe the following precautions to avoid damage:

## Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

| Parameter | Rating | Standard |
| :---: | :---: | :---: |
| Human Body <br> Model (HBM) | 1000 V | ESDA/JEDEC JS |
| (Class 1C) | -001 |  |
| Charged Device <br> Model (CDM) | $1000 ~ V$ <br> (Class C3) | ESDA/JEDEC JS <br> -002 |

## Power Supplies

De-coupling capacitors should be placed at the $V_{D D}$ supply pin to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than $1 \mathrm{~V} / 10 \mu \mathrm{~s}$. In addition, all control pins should remain at $0 \mathrm{~V}(+/-0.3 \mathrm{~V})$ and no RF power should be applied while the supply voltage ramps or while it returns to zero.

## Integrated Switch and LNA Module

## Typical Performance Curves

$P_{\text {iN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)


ANT Port Return Loss - RX Mode


RXOUT Port Return Loss - RX Mode


ANT to RXOUT Gain ${ }^{11}$ - RX Mode


ANT Port Return Loss - RX Mode


RXOUT Port Return Loss - RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

## Integrated Switch and LNA Module

## Typical Performance Curves

$P_{\text {iN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

## ANT to RXOUT Noise Figure ${ }^{11}$ - RX Mode



ANT to RXOUT Port Reverse Isolation ${ }^{11}$ - RX Mode


ANT to TERM Port Switch Isolation ${ }^{11}$ - RX Mode


## Supply Current - RX Mode



ANT to RXOUT Port Reverse Isolation ${ }^{11}$ - RX Mode


ANT to TERM Port Switch Isolation ${ }^{11}$ - RX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

## Integrated Switch and LNA Module

## Typical Performance Curves

$P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

## ANT to TERM Switch Insertion Loss ${ }^{11}$ - TX Mode



ANT Port Return Loss - TX Mode


TERM Port Return Loss - TX Mode


ANT to TERM Switch Insertion Loss ${ }^{11}$ - TX Mode


ANT Port Return Loss - TX Mode


TERM Port Return Loss - TX Mode


[^1]
## MAMF-011119

## Integrated Switch and LNA Module

## Typical Performance Curves <br> $P_{\text {IN }}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{Z}_{0}=50 \Omega$ (unless otherwise indicated)

## ANT to TERM Port Compression Characteristic ${ }^{11}$ at 2.5 GHz - TX mode



ANT to TERM Port Compression Characteristic ${ }^{11}$ at 3.75 GHz - TX mode


[^2]
## Sample Board Schematic



## Sample Board PCB Layout



- Material: Megtron 4S R-5735S
- Dielectric thickness: 0.254 mm
- Track/Gap: 0.45/0.6 mm
- Finished copper thickness: $44 \mu \mathrm{~m}+/-10 \mu \mathrm{~m}$
- Finish both sides: $0.075 \mu \mathrm{~m}$ gold over $4.5 \mu \mathrm{~m}$ nickel
- Further layout information available on request


## Parts List

| Part | Value | Case style |
| :---: | :---: | :---: |
| C 1 | $10 \mu \mathrm{~F}$ | 0603 |
| C 2 | 5 pF | 0402 |
| C 3 | 10 nF | 0402 |
| C 4 | 470 pF | 0402 |
| R1 | $1 \mathrm{k} \Omega$ | 0402 |
| R2 | $100 \Omega$ | 0402 |

Recommended Thermal Land Pattern


- 25 Ground Vias
- 0.5 mm Diameter, $1 / 2 \mathrm{oz}$. Copper


## Lead-Free 6 mm 20-Lead QFN ${ }^{\dagger}$


${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 3 requirements in accordance to JEDEC J-STD-020D.
Plating is NiPdAuAg over Copper

Integrated Switch and LNA Module
1 - 6 GHz
Rev. V1

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Amplifier category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15\#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMCAUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310


[^0]:    * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]:    11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.
[^2]:    11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded
