Voltage Controlled Oscillator

$11.0-11.82 \mathrm{GHz}$

Features

- Low Phase Noise
- Wide Tuning Range
- Divide-by-Two Output
- Integrated Buffer Amplifier
- Excellent Temperature Stability
- +5 V Bias Supply
- Lead-Free 5 mm 32-Lead PQFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

The MAOC-009872 is an InGaP HBT-based voltage controlled oscillator for frequency generation. No external matching components are required. This VCO is easily integrated into a phase lock loop using the divide-by-two output. The extremely low phase noise makes this part ideal for many radio applications including high capacity digital radios.

The MAOC-009872 primary applications are Point-to-Point Radio, Point-to-Multipoint Radio, Communications Systems, and Low Phase Noise applications.

The 5 mm PQFN package has a lead-free finish that is RoHS compliant and compatible with a $260^{\circ} \mathrm{C}$ reflow temperature. The package also features low lead inductance and an excellent thermal path.

Ordering Information ${ }^{1}$

Part Number	Package
MAOC-009872-TR0500	500 piece reel
MAOC-009872-TR1000	1000 piece reel
MAOC-009872-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Block Diagram

Pin Designations ${ }^{2}$

Pin	Function	Pin	Function
1	N/C	17	N/C
2	N/C	18	N/C
3	N/C	19	RF
4	N/C	20	N/C
5	N/C	21	V_{Cc}
6	N/C	22	N/C
7	$V_{\text {buffer }}$	23	N/C
8	N/C	24	N/C
9	N/C	25	N/C
10	N/C	26	N/C
11	N/C	27	N/C
12	RF/2	28	N/C
13	N/C	29	$\mathrm{V}_{\text {Tune }}$
14	N/C	30	N/C
15	N/C	31	N/C
16	N/C	32	N/C

2. The exposed pad centered on the package bottom must be connected to RF and DC ground. Connecting all N/C pins to RF/DC Ground in the layout is also recommended.
[^0]Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{BUFFER}}=5 \mathrm{~V}^{3}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Output Power	RF Port, $11.0-11.82 \mathrm{GHz}$ RF/2 Port, 5.5-5.91 GHz	dBm	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	7	-
SSB Phase Noise	RF Port, 10 kHz Offset RF Port, 100 kHz Offset	dBc/Hz	-	$\begin{gathered} -83 \\ -112 \end{gathered}$	$-\overline{-108}$
Harmonics/Subharmonics $\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {BUFFER }}=\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$	RF Port, ${ }^{1} / 2 \mathrm{~F}_{\mathrm{o}}$ RF/2 Port, 2F。	dBc	-	$\begin{aligned} & -20 \\ & -9 \end{aligned}$	-
Pulling (Sensitivity to Match) $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BUFFER }}=\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$	RF Port, VSWR = 1.95:1 to 2.25:1	MHz pk-pk	-	11.0	-
Pushing (Sensitivity to Supply Voltage)	$\begin{gathered} \text { RF Port, } V_{\text {TUNE }}=5 \mathrm{~V} \\ \text { RF/2 Port, } \mathrm{V}_{\text {TUNE }}=5 \mathrm{~V} \end{gathered}$	MHz/V	-	$\begin{gathered} 5 \\ 2.5 \end{gathered}$	-
Frequency Drift Rate (Sensitivity to Temperature)	RF Port, $11.0-11.82 \mathrm{GHz}$ RF/2 Port, 5.5-5.91 GHz	$\mathrm{MHz} /{ }^{\circ} \mathrm{C}$	-	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$	-
Output Return Loss	RF Port, $11.0-11.82 \mathrm{GHz}$ RF/2 Port, 5.5-5.91 GHz	dB	-	3 5	-
Tuning Sensitivity @ RF Port	$\mathrm{V}_{\text {TUNE }}=5 \mathrm{~V}$	GHz/V	-	0.19	-
Supply Current	$\begin{gathered} \mathrm{I}_{\text {TOTAL }}\left(\mathrm{I}_{\mathrm{CC}}+\mathrm{I}_{\mathrm{BUFFER}}\right) \\ \mathrm{I}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{BUFFER}} \end{gathered}$	mA	-	$\begin{gathered} 165 \\ 145 \\ 20 \end{gathered}$	$\begin{gathered} 195 \\ 165 \\ 30 \\ \hline \end{gathered}$
Tune Voltage	$V_{\text {TUNE }}$	V	2	-	13
Tuning Current Leakage	$\mathrm{V}_{\text {TUNE }}=13 \mathrm{~V}$	$\mu \mathrm{A}$	-	5	10

3. VCO can operate over the 4.75 V to 5.25 V supply voltage range.

Absolute Maximum Ratings ${ }^{4,5}$

Parameter	Absolute Maximum
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}} \& \mathrm{~V}_{\text {BUFFER }}\right)$	+5.5 Vdc
$\mathrm{V}_{\text {TUNE }}$	0 to +15 Vdc
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature 6	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Case Temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ (measured @ exposed pad)	$+100^{\circ} \mathrm{C}$
Junction Temperature ${ }^{7}$	$+135^{\circ} \mathrm{C}$

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. MACOM does not recommend sustained operation near these survivability limits.
6. Operating at nominal conditions with $\mathrm{T}_{j} \leq 135^{\circ} \mathrm{C}$ will ensure MTTF > 1×10^{6} hours.
7. Junction Temperature $\left(T_{J}\right)=T_{C}+\Theta j c$ * $\left(V{ }^{*} I\right)$

Typical thermal resistance $(\Theta \mathrm{jc})=35^{\circ} \mathrm{C} / \mathrm{W}$.
a) For $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=53.9^{\circ} \mathrm{C} @ 5 \mathrm{~V}, 165 \mathrm{~mA}$
b) For $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=114.8^{\circ} \mathrm{C} @ 5 \mathrm{~V}, 170 \mathrm{~mA}$

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B devices.

Typical Performance Curves: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BUFFER }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise indicated)

Output Frequency vs. Tuning Voltage - RF Port

Output Frequency vs. Tuning / Supply Voltage - RF Port

Output Power vs. Tuning Voltage - RF Port

Output Frequency vs. Tuning Voltage - RF/2 Port

Output Frequency vs. Tuning / Supply Voltage - RF2 Port

Output Power vs. Tuning Voltage - RF2 Port

Typical Performance Curves: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {BUFFER }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise indicated)

Frequency Sensitivity vs. Tuning Voltage - RF Port

Single Side Band Phase Noise vs. Tuning Voltage RF Port

Pushing - RF Port

Frequency Sensitivity vs. Tuning Voltage - RF2 Port

Single Side Band Phase Noise vs. Frequency Offset RF Port ($V_{\text {TUNE }}=5 \mathrm{~V}$)

Temperature Drift - RF Port

МАСОМ

Voltage Controlled Oscillator

11.0 - 11.82 GHz

Sample Board

Parts List

Component	Value	Case Size
C 1	100 pF	0402
$\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$	$0.1 \mu \mathrm{~F}$	0402
C 5	$10 \mu \mathrm{~F}$ Tantalum	1206
C 6	0Ω	0402

Lead-Free 5 mm 32-Lead PQFN ${ }^{\dagger}$

[^1]Voltage Controlled Oscillator
11.0 - 11.82 GHz

MACOM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for VCO Oscillators category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MAOC-009260-SMB003 MAOC-009261-PKG003 HMC389LP4ETR MAOC-009872-000000 MAOC-009264-PKG003 MAOC-009270PKG003 HMC384LP4ETR CVCO33CL-0415-0435 CVCO33CL-0750-0770 HMC1166LP5ETR HMC391LP4TR HMC1168LP5ETR MAOC-009260-PKG003 MAOC-009266-PKG003 HMC534LP5ETR HMC431LP4ETR HMC1163LP5E HMC3587LP3BETR CVC055CC-1680-1680 CVCO33CL-0125-0200 CVCO45CL-0100-0140 CVCO45CL-0421-0441 CRBV55BE-1930-1990 MAX2609EUT+T HMC1160LP5E HMC1161LP5E HMC1164LP5E HMC1165LP5E HMC1166LP5E HMC1167LP5E HMC1168LP5E HMC586LC4B HMC587LC4BTR HMC358MS8GE HMC384LP4E HMC385LP4E HMC386LP4E HMC388LP4E HMC390LP4E HMC391LP4 HMC391LP4E HMC398QS16GE HMC401QS16GE HMC416LP4E HMC429LP4E HMC430LP4E HMC506LP4 HMC506LP4E HMC509LP5 HMC510LP5E

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.
 Plating is 100% matte tin over copper.

