Features

- Exceptional Broadband Performance
- Low Loss:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{X}}=0.24 \mathrm{~dB} @ 2.025 \mathrm{GHz}, 35 \mathrm{~mA} \\
& \mathrm{~T}_{\mathrm{X}}=0.38 \mathrm{~dB} @ 3.500 \mathrm{GHz}, 35 \mathrm{~mA}
\end{aligned}
$$

- High Isolation:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{X}}=31 \mathrm{~dB} @ 2.025 \mathrm{GHz}, 35 \mathrm{~mA} \\
& \mathrm{R}_{\mathrm{x}}=27 \mathrm{~dB} @ 3.500 \mathrm{GHz}, 35 \mathrm{~mA}
\end{aligned}
$$

- High RF CW Input Power:

20 W CW (T_{x} Ant Port)

- Higher IP3:
$>34 \mathrm{dBm}$ (T_{x} Ant Port)
- Surface Mount 3 mm 12 Lead PQFN Package
- RoHS* Compliant

Applications

- Suitable for High Power TD-SCDMA \& WiMax

Description

The MASW-000825 is a $0.05-6.0 \mathrm{GHz}$ SP2T PIN diode switch assembled is a lead-free compact 3 mm PQFN plastic package. This high peak and average power switch offers extraordinary performance with excellent isolation to loss ratio for both the T_{X} and R_{X} States. This SP2T also provides outstanding 20 W CW power handling coupled with 64 dBm IIP3 for maximum switch performance.

This PIN diode switch is ideally suited for T/R or LNA Protect Switch applications such as WiMax and TDSCDMA.

This device incorporates a PIN diode die fabricated with MACOMs patented Silicon-Glass $\mathrm{HMIC}^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

Functional Schematic

Pin Configuration ${ }^{1}$

Pin \#	Function
$1,5-8,12,16$	$\mathrm{~N} / \mathrm{C}$
$2,4,9,11,13,15$	GND
3	$\mathrm{~T}_{\mathrm{x}}$
10	Rx
14	Ant

1. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information ${ }^{2}$

Part Number	Package
MASW-000825-12770T	1000 piece reel, 7 inch
MASW-000825-001SMB	Sample Board

2. Reference Application Note M513 for reel size information.
[^0]Electrical Specifications ${ }^{3}: \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega$, Bias $=35 \mathrm{~mA} / 28 \mathrm{~V}, \mathrm{P}_{\mathrm{INC}}=0 \mathrm{dBm}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss, R_{X}	$2.0-2.7 \mathrm{GHz}$ $3.3-3.8 \mathrm{GHz}$ $4.9-5.9 \mathrm{GHz}$	dB	-	$\begin{aligned} & 0.42 \\ & 0.56 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.71 \\ & 1.10 \end{aligned}$
Insertion Loss, T_{X}	$2.0-2.7 \mathrm{GHz}$ $3.3-3.8 \mathrm{GHz}$ $4.9-5.9 \mathrm{GHz}$	dB	-	$\begin{aligned} & 0.29 \\ & 0.38 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.48 \\ & 0.71 \end{aligned}$
Isolation, T_{X} to R_{X}	$\begin{aligned} & 2.0-2.7 \mathrm{GHz} \\ & 3.3-3.8 \mathrm{GHz} \\ & 4.9-5.9 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & 24.5 \\ & 22.0 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 28.6 \\ & 26.0 \\ & 22.4 \end{aligned}$	-
Isolation, R_{x} to T_{x}	$\begin{aligned} & 2.0-2.7 \mathrm{GHz} \\ & 3.3-3.8 \mathrm{GHz} \\ & 4.9-5.9 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & 21.3 \\ & 19.7 \\ & 16.5 \end{aligned}$	$\begin{aligned} & \hline 24.2 \\ & 21.6 \\ & 18.5 \end{aligned}$	-
Input Return Loss, T_{x}	$\begin{aligned} & 2.0-2.7 \mathrm{GHz} \\ & 3.3-3.8 \mathrm{GHz} \\ & 4.9-5.9 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & -28 \\ & -28 \\ & -25 \end{aligned}$	-
Input Return Loss, R_{X}	$\begin{aligned} & 2.0-2.7 \mathrm{GHz} \\ & 3.3-3.8 \mathrm{GHz} \\ & 4.9-5.9 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & -28 \\ & -28 \\ & -24 \end{aligned}$	-

3. See Bias Table

Electrical Specifications ${ }^{4,5}: \mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Conditions	Units	Min.	Typ.	Max.
TX $2^{\text {nd }}$ Harmonic	$\mathrm{T}_{\mathrm{x}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA}$ Fo $=2.010 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm}, \mathrm{T}_{\mathrm{X}}$ to Antenna	dBc	-	-70	-
$\mathrm{T}_{\times} 3^{\text {rd }}$ Harmonic	$\mathrm{T}_{\mathrm{x}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA}$ Fo $=2.010 \mathrm{GHz}, \mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm}, \mathrm{T}_{\mathrm{X}}$ to Antenna	dBc	-	-86	-
TX Input Third Order Intercept Point	$\begin{gathered} \mathrm{T}_{\mathrm{X}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F} 1=2.010 \mathrm{GHz}, \mathrm{~F} 2=2.020 \mathrm{GHz}, \\ \mathrm{P}_{\mathrm{IN}}=20 \mathrm{dBm}, \mathrm{~T}_{\mathrm{x}} \text { to Antenna } \end{gathered}$	dBm	-	64	-
Tx CW Input Power	$\begin{gathered} \mathrm{T}_{\mathrm{X}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{X}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010,3.500 \mathrm{GHz}, \mathrm{~T}_{\mathrm{X}} \text { to Antenna } \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	-	$\begin{aligned} & 43 \\ & 20 \end{aligned}$
T_{X} Peak Input Power	$\begin{gathered} \mathrm{T}_{\mathrm{x}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010 \mathrm{GHz}, \mathrm{~T}_{\mathrm{x}} \text { to Antenna } \end{gathered}$ ($5 \mu \mathrm{~s}$ RF Pulse Width, 1% Duty 1.10:1 Ant VSWR)	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	-	$\begin{gathered} 53 \\ 200 \end{gathered}$
Rx CW Input Power	$\begin{gathered} \mathrm{R}_{\mathrm{x}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{~T}_{\mathrm{X}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010 \mathrm{GHz}, \text { Antenna to } \mathrm{R}_{\mathrm{X}} \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	-	$\begin{gathered} 39 \\ 8 \end{gathered}$
$\mathrm{T}_{\mathrm{X}} \operatorname{Input~P1dB}{ }^{6}$	$\begin{gathered} \mathrm{T}_{\mathrm{x}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010 \mathrm{GHz}, \mathrm{~T}_{\mathrm{x}} \text { to Antenna } \end{gathered}$	dBm	-	>43	-
TX RF Switching Speed	$\begin{gathered} \mathrm{T}_{\mathrm{X}}=5 \mathrm{~V} @ 35 \mathrm{~mA}, \mathrm{R}_{\mathrm{x}}=28 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=2.010 \mathrm{GHz} \text {, } \mathrm{T}_{\mathrm{x}} \text { to Antenna } \\ \text { (10\%-90\% RF Voltage) } \\ 1 \mathrm{MHz} \text { Rep Rate in Modulating Mode } \end{gathered}$	ns	-	200	-

[^1]
Bias Table

Port	Tx pin 3	$\mathbf{R x}$ pin 10	ANT pin 14
$\mathrm{T}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	$28 \mathrm{~V} @ 0 \mathrm{~mA}$	0 V	$5 \mathrm{~V} @ 35 \mathrm{~mA}$
$\mathrm{~T}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	0 V	$28 \mathrm{~V} @ 0 \mathrm{~mA}$	$5 \mathrm{~V} @ 35 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	0 V	$28 \mathrm{~V} @ 0 \mathrm{~mA}$	$5 \mathrm{~V} @ 35 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$28 \mathrm{~V} @ 0 \mathrm{~mA}$	0 V	$5 \mathrm{~V} @ 35 \mathrm{~mA}$

Absolute Maximum Ratings ${ }^{7,8}$
@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	100 mA
DC Reverse Voltage	140 V
Tx Incident CW Power	20 W CW
Tx Peak Incident Power	$150 \mathrm{~W}, 5 \mu \mathrm{~s}$ Pulse Width, 1% Duty Cycle
Junction Temperature	$+175^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

7. Exceeding any one or combination of these limits may cause permanent damage to this device.
8. MACOM does not recommend sustained operation near these survivability limits.

Minimum Reverse Bias Voltage ${ }^{9}$

Frequency (MHz)	DC Voltage (V)
50	54
500	50
1000	43
2000	29
4000	17
6000	12

9. Minimum DC bias voltage to maintain low loss under 20 W of Tx power with 1.5:1 VSWR.

Driver and SP2T Schematic with Positive Voltage ${ }^{10,11,12}$

10. Center ground area of MLP 3 mm package must be attached to thermal ground for optimum RF power performance.
11. MACOM recommends the usage of the MADR-009150 driver with this switch.
12. Assembly Note: A typical soldering process profile and handling instructions are provided in Application Notes, S2083 "Surface Mount Instructions for QFN / DFN Packages" on the MACOM website at www.macom.com.

Parts List

Port	Value
C1 - C3	$27 \mathrm{pF}, 100 \mathrm{~V}$
C4	1000 pF
C5, C6	50 pF
C7 - C9	$0.1 \mu \mathrm{~F}$
L1, L3	47 nH
R1	120Ω

DC Bias to RF Truth Table

RF State	TTL \& DC Bias Conditions	Voltage at Common Anode
Low Loss $T_{x}-A n t ~ \& ~$ Isolation $T_{x}-R_{x}$	$5 \mathrm{~V} @ 35 \mathrm{~mA}\left(\mathrm{~T}_{\mathrm{x}}\right), 28 \mathrm{~V}$ @ $0 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{x}}\right)$	0.9 V
Low Loss Ant-R Isolation $\mathrm{R}_{x}-T_{x}$	$5 \mathrm{TTL}=0$	

Cross Section View of MACOM PCB

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B Human Body devices.

Typical Small Signal Performance @+25 ${ }^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{0}=50 \Omega$

Insertion Loss, 5 V, 35 mA

Return Loss, 5 V, 35 mA

Thermal Junction T_{X} vs. Input Power $T_{X}=5 V @ 20 m A \& 30 \mathrm{~mA}, R_{X}=25 \mathrm{~V} @ 0 \mathrm{~mA}$, T_{X} to Antenna, $F_{0}=2010 \mathrm{MHz}$

Isolation, $28 \mathrm{~V}, 0 \mathrm{~mA}$

Input Power vs. PCB/Heatsink Temperature $T_{X}=5 \mathrm{~V} @ 20 \mathrm{~mA} \& 30 \mathrm{~mA}, R_{X}=25 \mathrm{~V} @ 0 \mathrm{~mA}$, T_{X} to Antenna, $F_{0}=2010 \mathrm{MHz}$

Typical Small Signal Performance @ $+25^{\circ} \mathrm{C}$, Characteristic Impedance, $\mathrm{Z}_{0}=50 \Omega$

Insertion Loss T_{X} vs. Temperature ($5 \mathrm{~V}, 35 \mathrm{~mA}$)

Isolation T_{X} vs. Temperature ($28 \mathrm{~V}, 0 \mathrm{~mA}$)

Return Loss T_{X} vs. Temperature (5 V, 35 mA)

Insertion Loss R_{X} vs. Temperature (5 V, 35 mA)

Isolation R_{X} vs. Temperature ($28 \mathrm{~V}, 0 \mathrm{~mA}$)

Return Loss R_{X} vs. Temperature (5 V, 35 mA)

Lead-Free 3 mm 16-Lead PQFN ${ }^{\dagger}$

[^2]MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11 SKY13473-569LF

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: 4. Typical PIN diode forward voltage $=0.9 \mathrm{~V} @ 35 \mathrm{~mA}$ for insertion loss.
 5. Typical PIN diode reverse voltage $=28 \mathrm{~V}-1 \mathrm{~V}=27 \mathrm{~V}$ for isolation.
 6. Switch is asymmetrical, 43 dBm RF CW input power applies to T_{x} port only.
[^2]: ${ }^{\dagger}$ Reference Application Note S2803 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level (MSL) 1 requirements.

