Features

- Exceptional Broadband Performance
- Low Loss: $\mathrm{T}_{\mathrm{X}}=0.25 \mathrm{~dB} @ 2010 \mathrm{MHz}$
- High Isolation: $\mathrm{R}_{\mathrm{X}}=43 \mathrm{~dB} @ 2010 \mathrm{MHz}$
- Suitable for High Power LTE, TD-SCDMA, WiMAX, and Military Radio Applications
- Surface Mount 4 mm PQFN Package
- RoHS* Compliant
- Class 2 ESD Rating (HBM 2kv)

Applications

- Aerospace \& Defense
- ISM

Description

The MASW-000932 is a SPDT high power, broadband, high linearity, PIN diode T/R switch for 0.01 - 6.0 GHz applications, including WiMAX \& WiFi. The device is provided in an industry standard lead free 4 mm PQFN plastic package. This device incorporates a PIN diode die fabricated with MACOMs' patented silicon-glass HMIC ${ }^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact SPDT switch offers wideband performance with excellent isolation to loss ratio for both T_{X} and R_{X} states. The PIN diode provides 45 W CW power handling at an $85^{\circ} \mathrm{C}$ baseplate temperature and 72 dBm IIP3 at 2010 MHz for maximum switch performance.

Functional Diagram (Top View)

Pin Configuration ${ }^{1}$

Pin	Function
$1,13,15$	GND
2	ANT
$3,4,5,6,8,10,11,12,16$	$\mathrm{~N} / \mathrm{C}^{2}$
7	R_{X}
9	DC 2
14	$\mathrm{~T}_{\mathrm{X}}$
17	Pad

1. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.
2. MACOM recommends connecting all No Connection (N/C) pins to ground.

Ordering Information ${ }^{3}$

Part Number	Package
MASW-000932-13560T	1000 piece reel
MASW-000932-001SMB	Sample Board

3. Reference Application Note M513 for reel size information.
[^0]Electrical Specifications ${ }^{4}$: Freq. $=2.0,2.7,3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Bias $=100 \mathrm{~mA} / 28 \mathrm{~V}$

Parameter	100 mA / 28 V Conditions	Units	Min.	Typ.	Max.
Insertion Loss' R_{X} $P_{\mathrm{IN}}=0 \mathrm{dBm}$	$\mathrm{R}_{\mathrm{x}}, 2.0 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 2.0 \mathrm{GHz}$ $\mathrm{R}_{\mathrm{x}}, 2.7 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 2.7 \mathrm{GHz}$ $\mathrm{R}_{\mathrm{x}}, 3.5 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 3.5 \mathrm{GHz}$	dB	-	$\begin{aligned} & 0.60 \\ & 0.25 \\ & 0.72 \\ & 0.35 \\ & 0.80 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.80 \\ & \overline{-90} \\ & \overline{0.95} \\ & - \end{aligned}$
$\begin{gathered} \text { Isolation } \\ \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{gathered}$	R_{x} to Antenna, 2.0 GHz T_{X} to Antenna, 2.0 GHz R_{X} to Antenna, 2.7 GHz T_{X} to Antenna, 2.7 GHz R_{x} to Antenna, 3.5 GHz T_{X} to Antenna, 3.5 GHz	dB	$\begin{gathered} 40.0 \\ \overline{-} \\ 39.0 \\ 34.0 \end{gathered}$	$\begin{aligned} & 43.0 \\ & 14.0 \\ & 41.5 \\ & 12.0 \\ & 35.0 \\ & 10.0 \end{aligned}$	-
Input Return Loss	$\begin{gathered} \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \\ \mathrm{R}_{\mathrm{X}} \\ \mathrm{~T}_{\mathrm{X}} \end{gathered}$	dB	-	$\begin{aligned} & 34 \\ & 17 \end{aligned}$	-
Tx Input P0.1dB	TX to Antenna	dBm	-	49	-
$\mathrm{T}_{\times} 2^{\text {nd }}$ Harmonic	$\mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm}$	dBc	-	80	-
$\mathrm{T}_{\times} 3^{\text {rd }}$ Harmonic	$\mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm}$	dBc	-	95	-
Tx IIP3	$\mathrm{P}_{\mathrm{IN}}=10 \mathrm{dBm}, \mathrm{F} 1=2010 \mathrm{MHz}, \mathrm{F} 2=2020 \mathrm{MHz}$	dBm	-	72	-
Tx CW Input Power	$25^{\circ} \mathrm{C}$ Base plate, 2.01 GHz	dBm / W	-	49 / 80	-
Tx CW Input Power	$85^{\circ} \mathrm{C}$ Base plate, 2.01 GHz	dBm / W	-	46.5 / 45.0	-
R_{\times}CW Input Power	-	dBm / W	-	41.5 / 14.0	-
TX RF Switching Speed	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

4. See Bias Table

Absolute Maximum Ratings ${ }^{5,6}$

@ $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ } \mathrm { C } \text { (unless otherwise specified) } { } ^ { \text { (} } \text { (}}$

Parameter	Absolute Maximum
Forward Current	125 mA
DC Reverse Voltage	110 V
$\mathrm{~T}_{\mathrm{X}}$ Incident CW Power	$80 \mathrm{~W}(49 \mathrm{dBm})^{7}$ $@ 2010 ~ \mathrm{MHz}$
T_{X} Peak Incident Power	$>2000 \mathrm{~W}, 5 \mu \mathrm{~s}$, 1% duty Cycle
Junction Temperature	$+175^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

5. Exceeding these limits may cause permanent damage.
6. MACOM does not recommend sustained operation near these survivability limits.
7. Baseplate temperature must be controlled to a constant $+25^{\circ} \mathrm{C}$.
8. This rating is guaranteed if the RF ports are terminated.

Minimum Reverse Bias Voltage ${ }^{9}$

Frequency (MHz)	DC Voltage (V)
50	107^{10}
500	72^{10}
1000	44
2000	24
4000	12
6000	8

9. Minimum DC bias voltage to maintain low loss under 80 W of TX power with 1.5:1 VSWR
10. The MADR-009150 driver has a 55 V maimum voltage limit. For higher voltages, consider using the MADR-010574 driver.

Bias Diagrams \& Tables

T_{x}-ANT Insertion Loss, R_{X}-ANT Isolation

(Pin 16)

\mathbf{R}_{x}-ANT Insertion Loss, T_{x}-ANT Isolation
(Pin 16)

Bias Table

Bias Table	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{R}_{\mathbf{x}}$	DC2	ANT
Pin	Pin 14	Pin 7	Pin 9	Pin 2
$\mathrm{T}_{x}-A N T$ Isolation	$+28 \mathrm{~V}, 0 \mathrm{~mA}$	-100 mA	$+28 \mathrm{~V}, 0 \mathrm{~mA}$	$0 \mathrm{~V},+100 \mathrm{~mA}$
$\mathrm{~T}_{x}-\mathrm{ANT}$ Insertion Loss	-100 mA	$+28 \mathrm{~V},+50 \mathrm{~mA}$	-50 mA	$0 \mathrm{~V},+100 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	-100 mA	$+28 \mathrm{~V},+50 \mathrm{~mA}$	-50 mA	$0 \mathrm{~V},+100 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$+28 \mathrm{~V}, 0 \mathrm{~mA}$	-100 mA	$+28 \mathrm{~V}, 0 \mathrm{~mA}$	$0 \mathrm{~V},+100 \mathrm{~mA}$

Application Schematic using MADR-009150 Driver ${ }^{11,12,13,14,15,16}$

11. Forward Bias Diode Voltage: $D V_{F}$ is $\sim 0.9 \mathrm{~V} @ 22 \mathrm{~mA} ; \mathrm{DV}_{\mathrm{F}}$ is $\sim 1.0 \mathrm{~V} @ 35 \mathrm{~mA}$
12. $R 1$ is calculated by ($\mathrm{V}_{\mathrm{Cc}}-1.3 \mathrm{~V}$ approximation since $T x$ and $R x$ voltages " B " \& " A " on the driver will be slightly different)/I $l_{\text {seRIEs }}$, where $I_{\text {series }}$ is the desired bias current for the series diodes.
13. $R 2$ is calculated by $\left(\mathrm{V}_{D D}-1.5 \mathrm{~V}\right) / I_{S H U N T}$, where $\mathrm{I}_{\text {SHUNT }}$ is the desired forward bias current for the shunt diode. The power dissipation is calculated by $\mathrm{I}_{\text {SHUNT }} \mathrm{X}\left(\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}\right)$.
14. The current in through the back-biased diodes will be the leakage current for the diodes.
15. C1-C7, C9-C11, L1-L4, R1, R2, and the switch are discrete components that should be installed on the users board. It is recommended that Coilcraft 0603CS-27NXJLW or equivalent be used for L1-L4 at 2 GHz (values may vary based on the frequency).
16. C8 is already built-in for MASW-000932-13560 switch.

Parts List

Part	Value
C1 - C3	27 pF
C4	1000 pF
$\mathrm{C} 5, \mathrm{C} 10, \mathrm{C} 11$	$0.1 \mu \mathrm{~F}$
$\mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8^{16}, \mathrm{C} 9$	50 pF
L1, L2, L3, L4	27 nH
R1	$39 \Omega^{12}$
R2	see note 13

Typical Performance Curves, T_{X} (100 mA Bias Current)

Insertion Loss, T_{X}

Isolation, T_{X}

Output Return Loss, \boldsymbol{T}_{X}

Typical Performance Curves, R_{x} (100 mA Bias Current)

Insertion Loss, R_{X}

Input Return Loss, R_{X}

Isolation, \boldsymbol{R}_{X}

Output Return Loss, R_{X}

Typical Performance Curves ${ }^{14}:+85^{\circ} \mathrm{C}$ base plate temperature, 2000 MHz

Power

14. Maximum Junction Temperature for this device is $175^{\circ} \mathrm{C}$.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 2 devices.

Lead Free 4 mm 16-Lead PQFN ${ }^{\dagger}$

[^1]MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11 SKY13473-569LF

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level 1 requirements.
 Plating is 100% matte tin over copper.

