Features

- Exceptional Broadband Performance
- Low Insertion Loss: $\mathrm{T}_{\mathrm{x}}=0.20 \mathrm{~dB}$ @ 2.7 GHz
- High Isolation: $\mathrm{R}_{\mathrm{X}}=50 \mathrm{~dB} @ 2.7 \mathrm{GHz}$
- High T_{x} RF Input Power = 120 W CW @ $2.0 \mathrm{GHz},+85^{\circ} \mathrm{C}$
- High T_{x} RF Input Peak Power: 1000 W
- Positive DC Bias Only Required
- Surface Mount 4 mm PQFN Package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Applications

- Suitable for High Power LTE, TD-SCDMA, WiMAX, and Military Radio Applications

Description

The MASW-000936 is a SPDT high power, broadband, high linearity, PIN diode T/R switch for $0.05-6.0 \mathrm{GHz}$ applications, including WiMAX \& WiFi. The device is provided in an industry standard lead free 4 mm PQFN plastic package.

This device incorporates PIN diode die fabricated with a low loss, high isolation switching diode

Ordering Information ${ }^{1}$

Part Number	Package
MASW-000936-14000T	1000 piece reel
MASW-000936-001SMB	Sample Board
MASW-000936-DRVSMB	Sample Board (with MADR-009150 driver)

1. Reference Application Note M513 for reel size information.

Functional Diagram (Top View)

Pin Configuration ${ }^{2}$

Pin \#	Pin Name	Description
$1,8,11,13$	GND	Ground
2	ANT	Antenna
$3,6,15$	N/C	Connect to Ground
$4,5,10,16$	N/C	No Connection
7	R_{x}	Receive
9	ShD Rx Bias	ShD R Bias
12	Tx Tune	Tx Tune 3
14	Tx	Transmit

2. The exposed pad centered on the package bottom must be connected to RF, DC and Thermal ground.
3. Optional tuning pin. See note 6 for details.
[^0]Electrical Specifications ${ }^{4}$: Freq. $=2.0,2.7,3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Bias $=100 \mathrm{~mA} / 28 \mathrm{~V}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
$\begin{aligned} & \text { Insertion Loss }{ }^{4} \\ & \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}}, 0.8 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 0.8 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 2.0 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 2.0 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 2.7 \mathrm{GHz} \\ & \mathrm{X}_{\mathrm{x}} 2.7 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 3.5 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 3.5 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.20 \\ & 0.07 \\ & 0.35 \\ & 0.15 \\ & 0.50 \\ & 0.20 \\ & 0.70 \\ & 0.25 \end{aligned}$	$\begin{gathered} \overline{-} \\ 0.55 \\ \overline{0.75} \\ \overline{-9} \\ - \end{gathered}$
$\begin{gathered} \text { Isolation }^{4} \\ \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{gathered}$	R_{x} to Antenna, 2.0 GHz T_{x} to Antenna, 2.0 GHz R_{X} to Antenna, 2.7 GHz T_{X} to Antenna, 2.7 GHz R_{x} to Antenna, 3.5 GHz T_{x} to Antenna, 3.5 GHz	dB	$\begin{aligned} & \frac{41}{40} \\ & \frac{33}{-} \end{aligned}$	$\begin{aligned} & 45 \\ & 16 \\ & 50 \\ & 13 \\ & 40 \\ & 11 \end{aligned}$	-
Input Return Loss ${ }^{4}$ $P_{\text {IN }}=0 \mathrm{dBm}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{~T}_{\mathrm{X}} \end{aligned}$	dB	-	$\begin{aligned} & 23 \\ & 34 \end{aligned}$	-
TX Input P0.1 dB	TX to Antenna	dBm	-	>50	-
$\begin{gathered} \mathrm{T}_{\mathrm{X}} \mathrm{IIP} 3 \\ \mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm} \end{gathered}$	F1 $=2010 \mathrm{MHz}, \mathrm{F} 2=2020 \mathrm{MHz}$	dBm	-	72	-
Tx CW Input Power	$\begin{gathered} 85^{\circ} \mathrm{C} \text { Base plate } \\ 2.0 \mathrm{GHz} \\ 2.7 \mathrm{GHz} \\ 3.5 \mathrm{GHz} \end{gathered}$	dBm / W	-	$\begin{gathered} 50.8 / 120 \\ 50 / 100 \\ 49 / 80 \end{gathered}$	-
$\mathrm{R}_{\mathrm{x}} \mathrm{CW}$ Input Power	$\begin{gathered} 85^{\circ} \mathrm{C} \text { Base plate } \\ 2.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 41.5 \\ 14 \end{gathered}$	-
TX RF Switching Speed	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

[^1]
Bias Schematic

Parts List ${ }^{6}$

Component	Value	Package
$\mathrm{C} 1-\mathrm{C} 3$	22 pF	0603
$\mathrm{C} 4-\mathrm{C} 7$	27 pF	0603
$\mathrm{~L} 1-\mathrm{L} 4$	68 nH	0603
R^{5}	39Ω	0603
R^{5}	480Ω	See note 5

Suggested Switch Driver
MADR-009150 or MADR-010574

Bias Table

Switch State	Tx $_{\mathbf{x}}$ Bias	$\mathbf{R}_{\mathbf{x}}$ Bias	ShD $\mathbf{R}_{\mathbf{x}}$ Bias	ANT Bias
T_{x}-ANT Isolation	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+5 V
$\mathrm{~T}_{\mathrm{x}}$-ANT Insertion Loss	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}),+56 \mathrm{~mA}$	$(\mathrm{GND}),-56 \mathrm{~mA}$	+5 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}),+56 \mathrm{~mA}$	$(\mathrm{GND}),-56 \mathrm{~mA}$	+5 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+5 V

3

Absolute Maximum Ratings ${ }^{7,8,9}$
$@ T_{A}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	150 mA
DC Reverse Voltage	130 V
$\mathrm{~T}_{\mathrm{X}}$ Incident CW Power	See Power De-rating Curve
T_{X} Incident Peak Power $\left(10 \mu \mathrm{~s}\right.$ Pulse Width $\left.{ }^{10}\right)$	1000 W
R_{x} Incident CW Power	$41.5 \mathrm{dBm} \mathrm{(14} \mathrm{W)}$
Junction Temperature $2 \mathrm{GHz},+85^{\circ} \mathrm{C}$	
Operating Temperature	$+175^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

7. Exceeding these limits may cause permanent damage.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Operating at nominal conditions with $\mathrm{T}_{\mathrm{J}} \leq+175^{\circ} \mathrm{C}$ will ensure MTTF > 1×10^{6} hours.
10. Measured with 4 ms pulse period, up to $+100^{\circ} \mathrm{C}$ case temperature.

Minimum Reverse Bias Voltage ${ }^{11}$

Frequency (MHz)	DC Voltage (V)
50	130^{12}
500	91^{12}
1000	57^{12}
2000	31
4000	16
6000	11

11. Minimum DC bias voltage to maintain low loss under 120 W of Tx power with 1.5:1 VSWR
12. The MADR-009150 switch driver has a maximum output voltage of 55 V . If a higher output voltage is desired, then one may want to consider using the MADR-010574 switch driver.
T_{X} Input Power De-rating @ 20 dB I/O Return Loss

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C Human Body devices.

Typical Performance Curves (RF-probed parts), T_{X} (100 mA Bias Current)

Insertion Loss, T_{X}

Input Return Loss, T_{X}

Isolation, $\boldsymbol{T}_{\boldsymbol{X}}$

Output Return Loss, T_{X}

Typical Performance Curves (RF-probed parts), $\mathbf{R X}_{\mathrm{X}}$ (100 mA Bias Current)

Insertion Loss, R_{X}

Input Return Loss, R_{X}

Isolation, RX

Output Return Loss, R_{X}

PCB Footprint

Lead Free 4 mm 16-Lead PQFN ${ }^{\dagger}$

NOTES:

1. ALL DIMENSION PER JEDEC MO-220, VAR. VGGC-3 EXCEPT INDICATED DIMENSIONS

REFERENCE JEDEC SPEC. FOR ADDITIONAL DIMENSION AND TOLERANCE INFORMATION.
2. ALL DIMENSIONS SHOWN AS IN/MM.

[^2]
PIN Diode SPDT 120 W Switch for 0.05 - 6 GHz High Power Applications

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 122410-HMC686LP4E ADL5363EVALZ 130437-HMC1010LP4E EKIT01-HMC1197LP7F SKYA21001-EVB SMP1331-085-EVB EVAL01-HMC1041LC4 MAAL-011111000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC520ALC4 EV1HMC244AG16 EV1HMC539ALP3 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2692EVKIT\# SKY12343-364LF-EVB 108703-HMC452QS16G 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 UXN14M9PE SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB SKY13322-375LF-EVB SKY12207-478LF-EVB SE5023L-EK1 SE5004L-EK1 SE2436L-EK1 Se2435L-EK1 SIMSA915CDKL SIMSA915-DKL SIMSA433C-DKL SKY12211-478LF-EVB EVK-R202-00B

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: 4. See Bias Table
[^2]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level (MSL) 1 requirements.
 Plating is NiPdAuAg.

