Features

- Exceptional Broadband Performance
- Low Insertion Loss: $\mathrm{T}_{\mathrm{x}}=0.20 \mathrm{~dB}$ @ 2.7 GHz
- High Isolation: $\mathrm{R}_{\mathrm{X}}=50 \mathrm{~dB} @ 2.7 \mathrm{GHz}$
- High T_{x} RF Input Power = 120 W CW @ $2.0 \mathrm{GHz},+85^{\circ} \mathrm{C}$
- High T_{x} RF Input Peak Power: 1000 W
- Positive DC Bias Only Required
- Surface Mount 4 mm PQFN Package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Applications

- Suitable for High Power LTE, TD-SCDMA, WiMAX, and Military Radio Applications

Description

The MASW-000936 is a SPDT high power, broadband, high linearity, PIN diode T/R switch for $0.05-6.0 \mathrm{GHz}$ applications, including WiMAX \& WiFi. The device is provided in an industry standard lead free 4 mm PQFN plastic package.

This device incorporates PIN diode die fabricated with a low loss, high isolation switching diode

Ordering Information ${ }^{1}$

Part Number	Package
MASW-000936-14000T	1000 piece reel
MASW-000936-001SMB	Sample Board
MASW-000936-DRVSMB	Sample Board (with MADR-009150 driver)

1. Reference Application Note M513 for reel size information.

Functional Diagram (Top View)

Pin Configuration ${ }^{2}$

Pin \#	Pin Name	Description
$1,8,11,13$	GND	Ground
2	ANT	Antenna
$3,6,15$	N/C	Connect to Ground
$4,5,10,16$	N/C	No Connection
7	R_{x}	Receive
9	ShD Rx Bias	ShD R Bias
12	Tx Tune	Tx Tune 3
14	Tx	Transmit

2. The exposed pad centered on the package bottom must be connected to RF, DC and Thermal ground.
3. Optional tuning pin. See note 6 for details.
[^0]Electrical Specifications ${ }^{4}$: Freq. $=2.0,2.7,3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Bias $=100 \mathrm{~mA} / 28 \mathrm{~V}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
$\begin{aligned} & \text { Insertion Loss }{ }^{4} \\ & \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}}, 0.8 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 0.8 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 2.0 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 2.0 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 2.7 \mathrm{GHz} \\ & \mathrm{X}_{\mathrm{x}} 2.7 \mathrm{GHz} \\ & \mathrm{R}_{\mathrm{x}}, 3.5 \mathrm{GHz} \\ & \mathrm{~T}_{\mathrm{x}}, 3.5 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 0.20 \\ & 0.07 \\ & 0.35 \\ & 0.15 \\ & 0.50 \\ & 0.20 \\ & 0.70 \\ & 0.25 \end{aligned}$	$\begin{gathered} \overline{-} \\ 0.55 \\ \overline{0.75} \\ \overline{-9} \\ - \end{gathered}$
$\begin{gathered} \text { Isolation }^{4} \\ \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} \end{gathered}$	R_{x} to Antenna, 2.0 GHz T_{x} to Antenna, 2.0 GHz R_{X} to Antenna, 2.7 GHz T_{X} to Antenna, 2.7 GHz R_{x} to Antenna, 3.5 GHz T_{x} to Antenna, 3.5 GHz	dB	$\begin{aligned} & \frac{41}{40} \\ & \frac{33}{-} \end{aligned}$	$\begin{aligned} & 45 \\ & 16 \\ & 50 \\ & 13 \\ & 40 \\ & 11 \end{aligned}$	-
Input Return Loss ${ }^{4}$ $P_{\text {IN }}=0 \mathrm{dBm}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{~T}_{\mathrm{X}} \end{aligned}$	dB	-	$\begin{aligned} & 23 \\ & 34 \end{aligned}$	-
TX Input P0.1 dB	TX to Antenna	dBm	-	>50	-
$\begin{gathered} \mathrm{T}_{\mathrm{X}} \mathrm{IIP} 3 \\ \mathrm{P}_{\mathrm{IN}}=30 \mathrm{dBm} \end{gathered}$	F1 $=2010 \mathrm{MHz}, \mathrm{F} 2=2020 \mathrm{MHz}$	dBm	-	72	-
Tx CW Input Power	$\begin{gathered} 85^{\circ} \mathrm{C} \text { Base plate } \\ 2.0 \mathrm{GHz} \\ 2.7 \mathrm{GHz} \\ 3.5 \mathrm{GHz} \end{gathered}$	dBm / W	-	$\begin{gathered} 50.8 / 120 \\ 50 / 100 \\ 49 / 80 \end{gathered}$	-
$\mathrm{R}_{\mathrm{x}} \mathrm{CW}$ Input Power	$\begin{gathered} 85^{\circ} \mathrm{C} \text { Base plate } \\ 2.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 41.5 \\ 14 \end{gathered}$	-
TX RF Switching Speed	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

[^1]
Bias Schematic

Parts List ${ }^{6}$

Component	Value	Package
$\mathrm{C} 1-\mathrm{C} 3$	22 pF	0603
$\mathrm{C} 4-\mathrm{C} 7$	27 pF	0603
$\mathrm{~L} 1-\mathrm{L} 4$	68 nH	0603
R^{5}	39Ω	0603
R^{5}	480Ω	See note 5

Suggested Switch Driver
MADR-009150 or MADR-010574

Bias Table

Switch State	Tx $_{\mathbf{x}}$ Bias	$\mathbf{R}_{\mathbf{x}}$ Bias	ShD $\mathbf{R}_{\mathbf{x}}$ Bias	ANT Bias
T_{x}-ANT Isolation	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+5 V
$\mathrm{~T}_{\mathrm{x}}$-ANT Insertion Loss	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}),+56 \mathrm{~mA}$	$(\mathrm{GND}),-56 \mathrm{~mA}$	+5 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}),+56 \mathrm{~mA}$	$(\mathrm{GND}),-56 \mathrm{~mA}$	+5 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+5 V

3

Absolute Maximum Ratings ${ }^{7,8,9}$
$@ T_{A}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	150 mA
DC Reverse Voltage	130 V
$\mathrm{~T}_{\mathrm{X}}$ Incident CW Power	See Power De-rating Curve
T_{X} Incident Peak Power $\left(10 \mu \mathrm{~s}\right.$ Pulse Width $\left.{ }^{10}\right)$	1000 W
R_{x} Incident CW Power	$41.5 \mathrm{dBm} \mathrm{(14} \mathrm{W)}$
Junction Temperature $2 \mathrm{GHz},+85^{\circ} \mathrm{C}$	
Operating Temperature	$+175^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

7. Exceeding these limits may cause permanent damage.
8. MACOM does not recommend sustained operation near these survivability limits.
9. Operating at nominal conditions with $\mathrm{T}_{\mathrm{J}} \leq+175^{\circ} \mathrm{C}$ will ensure MTTF > 1×10^{6} hours.
10. Measured with 4 ms pulse period, up to $+100^{\circ} \mathrm{C}$ case temperature.

Minimum Reverse Bias Voltage ${ }^{11}$

Frequency (MHz)	DC Voltage (V)
50	130^{12}
500	91^{12}
1000	57^{12}
2000	31
4000	16
6000	11

11. Minimum DC bias voltage to maintain low loss under 120 W of Tx power with 1.5:1 VSWR
12. The MADR-009150 switch driver has a maximum output voltage of 55 V . If a higher output voltage is desired, then one may want to consider using the MADR-010574 switch driver.
T_{X} Input Power De-rating @ 20 dB I/O Return Loss

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C Human Body devices.

Typical Performance Curves (RF-probed parts), T_{X} (100 mA Bias Current)

Insertion Loss, T_{X}

Input Return Loss, T_{X}

Isolation, $\boldsymbol{T}_{\boldsymbol{X}}$

Output Return Loss, T_{X}

Typical Performance Curves (RF-probed parts), $\mathbf{R X}_{\mathrm{X}}$ (100 mA Bias Current)

Insertion Loss, R_{X}

Input Return Loss, R_{X}

Isolation, RX

Output Return Loss, R_{X}

PCB Footprint

Lead Free 4 mm 16-Lead PQFN ${ }^{\dagger}$

NOTES:

1. ALL DIMENSION PER JEDEC MO-220, VAR. VGGC-3 EXCEPT INDICATED DIMENSIONS

REFERENCE JEDEC SPEC. FOR ADDITIONAL DIMENSION AND TOLERANCE INFORMATION.
2. ALL DIMENSIONS SHOWN AS IN/MM.

[^2]
PIN Diode SPDT 120 W Switch for 0.05 - 6 GHz High Power Applications

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11 SKY13473-569LF

[^0]: * Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

[^1]: 4. See Bias Table
[^2]: ${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
 Meets JEDEC moisture sensitivity level (MSL) 1 requirements.
 Plating is NiPdAuAg.

