## Features

- Low Insertion Loss: 0.5 dB typical up to 1 GHz
- High Isolation: > $38 \mathrm{~dB} @ 900 \mathrm{MHz}$
- Low Power Consumption: < 10 $\mu \mathrm{A}$ @ -3 V
- Positive or Negative 2.5 to 8 V Control
- Lead-Free SOT-26 Package
- 100\% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- $260^{\circ} \mathrm{C}$ Reflow Compatible
- RoHS* Compliant Version of SW-442


## Description

M/A-COM's MASW-007935 is a GaAs monolithic switch in a low cost lead-free SOT-26 surface mount plastic package. The MASW-007935 is ideally suited for applications where very low power consumption, low insertion loss and very small size are required.

Typical application is in dual band systems which require switching between small signal components such as filter banks, single band LNA's, converters etc. The MASW-007935 can be used in applications up to 0.25 Watts in systems such as CDMA, WCDMA, PCS, DCS1800, GSM and other analog/ digital wireless communications systems.

The MASW-007935 is fabricated using a mature 0.5 micron GaAs PHEMT process. The process features full passivation for increased performance and reliability.

## Ordering Information ${ }^{1}$

| Part Number | Package |
| :---: | :---: |
| MASW-007935-000000 | Bulk Packaging |
| MASW-007935-TR1000 | 1000 piece reel |

1. Reference Application Note M513 for reel size information.

## Functional Schematic Positive Control Voltage



Functional Schematic Negative Control Voltage


## Pin Configuration

| Pin No. | Function | Description |
| :---: | :---: | :---: |
| 1 | RF1 | RF Input/Output |
| 2 | GND | RF Ground |
| 3 | RF2 | RF Input/Output |
| 4 | V2 | V Control 2 |
| 5 | RFC | RF Common |
| 6 | V1 | V Control 1 |

[^0]GaAs SPDT Terminated Switch

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \Omega^{2}, \mathrm{~V}_{\mathrm{CTL}}=-3 \mathrm{~V}$ (unless otherwise specified)

| Parameter | Test Conditions | Units | Min. | Typ. | Max. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss ${ }^{3}$ | $\begin{gathered} \mathrm{DC}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \end{gathered}$ | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ | - | $\begin{aligned} & 0.5 \\ & 0.8 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 1.0 \\ & 1.25 \end{aligned}$ |
| Isolation | $\begin{gathered} \mathrm{DC}-1 \mathrm{GHz} \\ 1-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \end{gathered}$ | dB <br> dB <br> dB | $\begin{aligned} & 36 \\ & 25 \\ & 21 \end{aligned}$ | $\begin{aligned} & 38 \\ & 28 \\ & 22 \end{aligned}$ | - |
| VSWR | $\begin{gathered} \mathrm{DC}-2 \mathrm{GHz} \\ 2-3 \mathrm{GHz} \end{gathered}$ | Ratio Ratio | - | $\begin{aligned} & 1.4: 1 \\ & 1.6: 1 \end{aligned}$ | $\begin{aligned} & 1.5: 1 \\ & 1.7: 1 \end{aligned}$ |
| $\mathrm{P}_{1 \mathrm{~dB}}$ (2.7 V supply) | $500 \mathrm{MHz}-3 \mathrm{GHz}$ | dBm | - | 24 | - |
| $\mathrm{P}_{1 \mathrm{~dB}}$ (5 V supply) | $500 \mathrm{MHz}-3 \mathrm{GHz}$ | dBm | - | 28 | - |
| $\mathrm{IP}_{2}$ (2.7 V supply) | 2-Tone 900 MHz , 5 MHz spacing, 10 dBm each tone | dBm | - | 80 | - |
| $\mathrm{IP}_{3}$ (2.7 V supply) | 2-Tone 900 MHz , 5 MHz spacing, 10 dBm each tone | dBm | - | 50 | - |
| $\begin{aligned} & \mathrm{T}_{\text {rise }}, \mathrm{T}_{\text {fall }} \\ & \mathrm{T}_{\text {on, }}, \mathrm{T}_{\text {off }} \\ & \text { Transients } \end{aligned}$ | $10 \%$ to $90 \%$ RF, $90 \%$ to $10 \%$ RF 50\% Control to 90\% RF, 50\% Control to 10\% RF In-Band | nS <br> nS <br> mV | - | $\begin{aligned} & 40 \\ & 60 \\ & 10 \end{aligned}$ | - |
| Control Current | $\mathrm{VCTL}=-3 \mathrm{~V}$ | $\mu \mathrm{A}$ | - | 6 | 15 |

2. External DC blocking capacitors are required on all RF ports when using positive voltage control.
3. Insertion loss can be optimized by varying the DC blocking capacitor value, e.g. 1000 pF for $100 \mathrm{MHz}-1 \mathrm{GHz}, 39 \mathrm{pF}$ for $0.5 \mathrm{GHz}-3 \mathrm{GHz}$.

## Absolute Maximum Ratings ${ }^{4,5}$

| Parameter | Absolute Maximum |
| :---: | :---: |
| Input Power $(0.5-3.0 \mathrm{GHz})$ |  |
| 3 V Control | +30 dBm |
| 5 V Control | +33 dBm |
| Operating Voltage | +8.5 Volts |
| Operating Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

4. Exceeding any one or combination of these limits may cause permanent damage to this device.
5. M/A-COM does not recommend sustained operation near these survivability limits.

## Truth Table

| Mode <br> (Control) | V1 | V2 | RFC - <br> RF1 | RFC - <br> RF2 |
| :---: | :---: | :---: | :---: | :---: |
| Positive $^{6}$ | $0 \pm 0.2 \mathrm{~V}$ <br> +2.5 to +8 <br> V | +2.5 to +8 <br> V <br> $0 \pm 0.2 \mathrm{~V}$ | On <br> Off | Off <br> On |
| Negative $^{7}$ | $0 \pm 0.2 \mathrm{~V}$ <br> -2.5 to -8 V | -2.5 to -8 V <br> $0 \pm 0.2 \mathrm{~V}$ | Off <br> On | On <br> Off |

6. External DC blocking capacitors are required on all RF ports and GND. GND capacitors can be used with positive control voltage to resonate lead inductance for improved isolation.
7. If negative control is used, DC blocking capacitors and GND capacitors are not required.

## Typical Performance Curves

Output VSWR vs. Frequency over Temperature


Isolation vs. Frequency over Temperature (Positive Control)


Insertion Loss vs. Frequency over Temperature (Positive Control)


Input VSWR vs. Frequency over Temperature


Isolation vs. Frequency over Temperature (Negative Control)


Insertion Loss vs. Frequency over Temperature (Negative Control)


GaAs SPDT Terminated Switch
DC -3.0 GHz

## Lead-Free SOT-26 Plastic Package ${ }^{\dagger}$


${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.

## Handling Procedures

Please observe the following precautions to avoid damage:

## Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

> THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6 MA4AGSW5 MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11


[^0]:    * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

