Features

- Suitable for High Power Military and Civilian Radio Applications
- Power Handling: 100 W @ $85^{\circ} \mathrm{C}$
- Insertion Loss: $0.35 \mathrm{~dB} @ 2 \mathrm{GHz}$
- Isolation: 40 dB @ 2 GHz
- Surface Mount 7 mm 16-lead HQFN Package
- RoHS* Compliant
- Class 1B HBM ESD Rating

Description

The MASW-011030 is a high power PIN diode SP3T switch in a common anode configuration, operating from 30 MHz to 3 GHz . It features low insertion loss and excellent linearity with low DC consumption. This device is capable of handling 100 Watts CW incident power at a base plate temperature of $85^{\circ} \mathrm{C}$.

This high power switch is ideal for use on land mobile radio and MIL-COM applications that require higher CW and pulsed power operation.

The MASW-011030 is manufactured using MACOM's hybrid manufacturing process featuring high voltage PIN diodes and passive devices integrated in a 7 mm HQFN 16 -lead plastic package.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-011030-14040T	500 piece reel
MASW-011030-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin	Function	Pin	Function
1	No Connection	9	B3 Bias
2	No Connection	10	RF3 / V3 Bias
3	RF1 / V1 Bias	11	No Connection
4	B1 Bias	12	No Connection
5	No Connection	13	No Connection
6	B2 Bias	14	RFC / V4 Bias
7	RF2 / V2 Bias	15	No Connection
8	No Connection	16	No Connection
		Paddle ${ }^{2}$	Ground

2. The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Bias $^{3}=+5 /-5 \mathrm{~V}, 50 \mathrm{~mA} / 100 \mathrm{~mA}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss $P_{\mathrm{IN}}=0 \mathrm{dBm}$	0.5 GHz 1.0 GHz 2.0 GHz	dB	-	$\begin{aligned} & 0.15 \\ & 0.20 \\ & 0.35 \end{aligned}$	$\begin{aligned} & - \\ & 0.35 \\ & 0.50 \end{aligned}$
Isolation $\mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$		dB	45	$\begin{aligned} & 50 \\ & 50 \\ & 40 \end{aligned}$	-
Input Return Loss	$\mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$	dB	-	>15	-
CW Input Power	$25^{\circ} \mathrm{C}$ base plate, 2.0 GHz	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 52 \\ 158 \end{gathered}$	-
CW Input Power	$85^{\circ} \mathrm{C}$ base plate, 2.0 GHz	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 50 \\ 100 \end{gathered}$	-
P0.1dB	$25^{\circ} \mathrm{C}$ base plate, 2.0 GHz	dBm	-	>52	-
Input IP3	$\begin{gathered} \mathrm{F} 1=2.00 \mathrm{GHz}, \mathrm{~F} 2=2.01 \mathrm{GHz} \\ \mathrm{P}_{\mathrm{IN}}=40 \mathrm{dBm} / \text { Tone, } 28 \mathrm{~V} \end{gathered}$	dBm	-	62	-
RF Switching Speed	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	800	-

3. See Bias table.

Bias (+5 V / -5 V) ${ }^{4}$

RF State	V1 Bias (V)	V2 Bias (V)	V3 Bias (V)	B1 Bias (V)	B2 Bias (V)	B3 Bias (V)	V4 Bias (V)
RFC - RF1 Low Loss RFC - RF2 Isolation RFC - RF3 Isolation	$\begin{aligned} & -5 \text { V @ } \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	0 V	0 V	0 V	0 V
RFC - RF2 Low Loss RFC - RF1 Isolation RFC - RF3 Isolation	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & -5 \mathrm{~V} @ \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	0 V	0 V	0 V	0 V
RFC - RF3 Low Loss RFC - RF1 Isolation RFC - RF2 Isolation	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	$\begin{gathered} +5 \mathrm{~V} @ \\ 50 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & -5 \mathrm{~V} @ \\ & 100 \mathrm{~mA} \end{aligned}$	0 V	0 V	0 V	0 V

4. DC reverse bias of a PIN Diode operating at a high power is dependent on RF frequency, incident power, and VSWR. See Minimum Reverse DC Voltage table for high power operation.

Minimum Reverse DC Voltage ${ }^{5}$

Frequency (MHz)	Minimum Reverse DC Voltage
30	$\|-120 \mathrm{~V}\|$
100	$\|-119 \mathrm{~V}\|$
200	$\|-114 \mathrm{~V}\|$
300	$\|-106 \mathrm{~V}\|$
500	$\|-90 \mathrm{~V}\|$
1000	$\|-59 \mathrm{~V}\|$
1500	$\|-43 \mathrm{~V}\|$
2000	l

5. Required to maintain low loss under 100 W of incident power with 1.5:1 VSWR

Absolute Maximum Ratings ${ }^{6,7}$

Parameter	Absolute Maximum
Forward Current	200 mA
Reverse DC Voltage	-150 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$

6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. MACOM does not recommend sustained operation near these survivability limits.

Application Schematic

Off-Chip Component Values

Component	Operating Frequency		Size
	$\mathbf{0 . 0 3 - 1 . 0 ~ G H z}$	$\mathbf{0 . 5} \mathbf{- 3 . 0} \mathbf{~ G H z}$	
C1, C3, C4, C6, C7, C9, C10	$0.1 \mu \mathrm{~F}$	270 pF	0603
C2, C5, C8, C11	$0.1 \mu \mathrm{~F}$	27 pF	0603
L1-L7	$3.3 \mu \mathrm{H}$	82 nH	0603
$\mathrm{R} 1-\mathrm{R} 3^{8}$	82Ω	82Ω	1210
$\mathrm{R} 4^{8}$	39Ω	39Ω	1210

8. Resistance values are used for small signal testing under $+5 \mathrm{~V} /-5 \mathrm{~V}$ bias conditions.

МАСОМ.

Switch, SP3T 100 Watt Reflective
0.03 - 3.0 GHz

Typical Performance Curves (using external bias tees):

Insertion Loss

Input Return Loss

Isolation

Output Return Loss

MACOM.

Switch, SP3T 100 Watt Reflective
0.03 - 3.0 GHz

Lead Free 7 mm 16-Lead HQFN ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level TBD requirements.
Plating is NiPdAuAg.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1B HBM devices.

M/A-COM Technology Solutions Inc. All rights reserved.
Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410 MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
HMC986A SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW310 MA4SW110 SW-313-PIN SKY13321-360LF SKY13405-490LF BGSF 18DM20 E6327 MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404466LF MASW-011060-TR0500 SKYA21024 SKY85601-11 SKY13473-569LF

