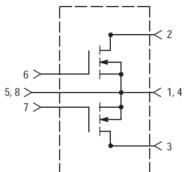

Rev. V1


Designed for broadband commercial and military applications up to 400 MHz frequency range. Primarily used as a driver or output amplifier in push–pull configurations. Can be used in manual gain control, ALC and modulation circuits.

N-Channel enhancement mode MOSFET

- Typical performance at 400 MHz, 28 V: Output power — 100 W
 Gain — 12 dB
 Efficiency — 60%
- · Low thermal resistance
- Low Crss 10 pF typ. @ VDS = 28 V
- · Ruggedness tested at rated output power
- Nitride passivated die for enhanced reliability
- Excellent thermal stability; suited for Class A operation

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Drain-Gate Voltage (R _{GS} = 1.0 MΩ)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	I _D	16	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	270 1.54	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Temperature Range	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.65	°C/W

⁽¹⁾ Total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

NOTE — <u>CAUTION</u> — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1

Rev. V1

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic (1)	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	-					
Drain-Source Breakdown Voltage (VGS = 0, I _D = 50 mA)	V _{(BR)DSS}	65	_	_	Vdc	
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)	IDSS	_	_	2.0	mAdc	
Gate-Source Leakage Current (VGS = 20 V, VDS = 0)	IGSS	_	_	1.0	μAdc	
ON CHARACTERISTICS (1)	•					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 50 mA)	VGS(th)	1.0	3.0	6.0	Vdc	
Drain-Source On-Voltage (VGS = 10 V, ID = 3.0 A)	VDS(on)	_	_	1.4	Vdc	
Forward Transconductance (VDS = 10 V, ID = 2.0 A)	9fs	1.8	2.2	_	mhos	
DYNAMIC CHARACTERISTICS (1)	<u>'</u>					
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{iss}	_	100	_	pF	
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)	C _{oss}	_	105	_	pF	
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	10	_	pF	
FUNCTIONAL CHARACTERISTICS (Figure 8) (2)	•					
Common Source Power Gain (VDD = 28 Vdc, Pout = 100 W, f = 400 MHz, IDQ = 200 mA)	GPS	10	12	_	dB	
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 100 W, f = 400 MHz, I _{DQ} = 200 mA)	η	55	60	_	%	
Electrical Ruggedness (V _{DD} = 28 Vdc, P _{out} = 100 W, f = 400 MHz, I _{DQ} = 200 mA, Load VSWR = 30:1, All Phase Angles At Frequency of Test)	Ψ	No Degradation in Output Power Before & After Test				

⁽¹⁾ Note each transistor chip measured separately

⁽²⁾ Both transistor chips operating in push-pull amplifier

Rev. V1

TYPICAL CHARACTERISTICS

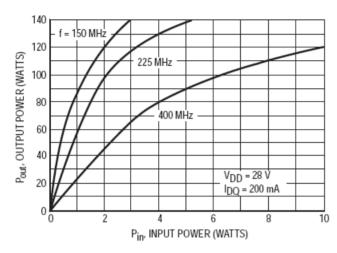


Figure 1. Output Power versus Input Power

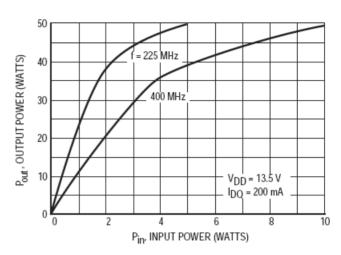


Figure 2. Output Power versus Input Power

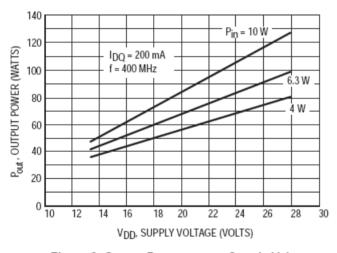


Figure 3. Output Power versus Supply Voltage

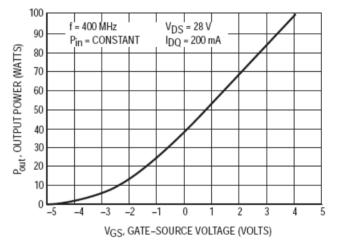


Figure 4. Output Power versus Gate Voltage

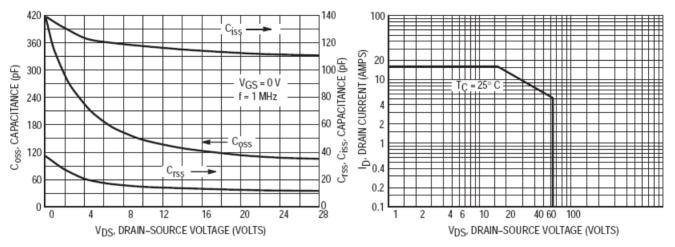
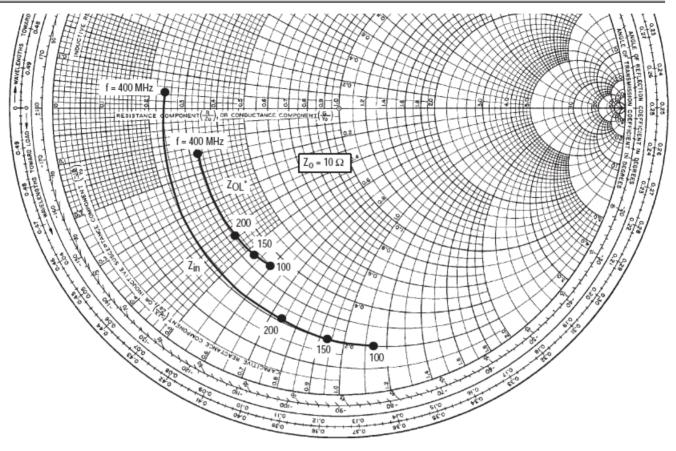
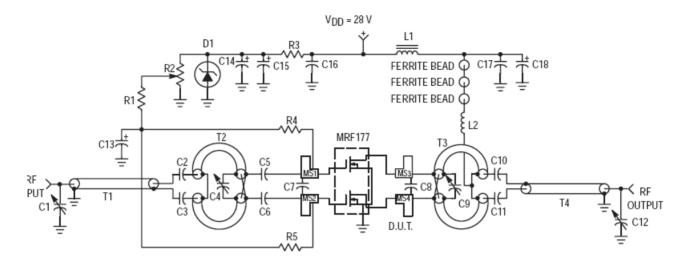
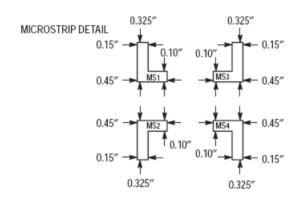



Figure 5. Capacitance versus Drain Voltage

Figure 6. DC Safe Operating Area

Rev. V1


NOTE: Input and Output Impedance values given are measured gate—to—gate and drain—to—drain respectively.


V _{DD} = 28	V _{DD} = 28 V I _{DQ} = 200 mA P _{out} = 100 W								
f (MHz)	Z _{in} Ohms	Z _{OL} * Ohms							
100	2.0 – j11.5	3.5 – j6							
150	2.05 – j9.45	3.35 – j5.34							
200	2.1 – j7.5	3.3 – j4.4							
400	2.35 + j0.4	3.2 – j1.38							

Z_{OL}*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 7. Impedance or Admittance Coordinates

C1, C12	1-10 pF JOHANSON OR EQU	JIVALENT D1	1N5347B, 20 Vdc
C2, C3, C5, C6, C10, C11	270 pF ATC 100 MIL CHIP CA	√P L1	1-TURN NO. 18, 0.25", 2-HOLE FERRITE BEAD
C4, C9	1-20 pF	L2	8-1/2 TURNS NO. 18, CLOSE WOUND .375" DIA.
C7	36 pF CHIP CAP	R1, R4, R5	10 kΩ @ 1/2 W RESISTOR
C8	10 pF CHIP CAP	R2	10 kΩ, 10 TURN RESISTOR
C13, C14	0.1 μFD @ 50 Vdc	R3	2.0 kΩ @ 1/2 W RESISTOR
C15, C18	10 μFD @ 50 Vdc	T1	1-1/2 T, 50 Ω COAX, .034" DIA. ON DUAL 0.5" FERRITE CORE
C16	500 pF BUTTON	T2	2.0" 25 Ω COAX, .075" DIA.
C17	1000 pF UNCASED MICA	T3	2.1" 10 Ω COAX, .075" DIA.
		T4	4.0" 50 Ω COAX, .0865" DIA.
		BOARD	Dielectric Thickness = 0.060" 2oz Copper, Cu-Clad. Teflon Fiberglass, ε_r = 2.5

Figure 8. Test Circuit Electrical Schematic

Rev. V1

NOTE: S-Parameter data represents measurements taken from one chip only.

Table 1. Common Source S-Parameters ($V_{DS} = 24 \text{ V}, I_{D} = 0.4 \text{ A}$)

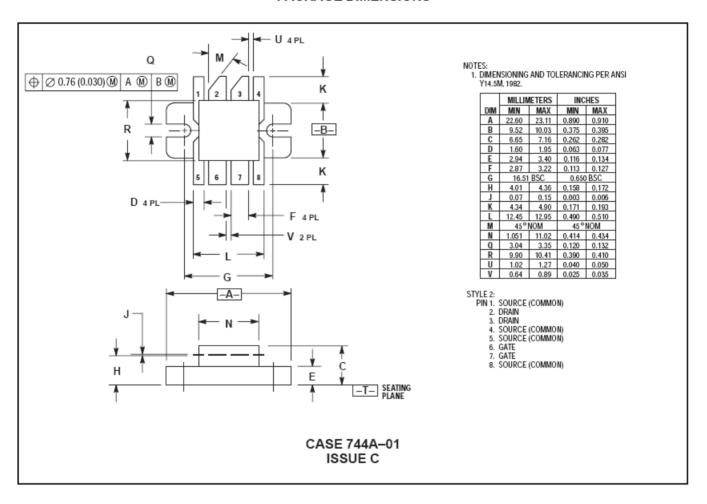
f	S	11	S	21	s ₁₂		S	22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф
30	0.797	-154	12.40	88	0.029	2	0.756	-159
40	0.739	-161	9.06	89	0.027	8	0.702	-165
50	0.749	-164	6.84	85	0.026	7	0.707	-168
60	0.770	-163	6.06	80	0.027	3	0.754	-168
70	0.790	-164	5.40	73	0.027	-1	0.776	-168
80	0.800	-166	4.60	70	0.026	-1	0.777	-168
90	0.808	-167	3.94	67	0.025	-1	0.795	-168
100	0.816	-168	3.47	64	0.024	-1	0.809	-169
110	0.816	-169	3.14	62	0.023	1	0.809	-169
120	0.815	-170	2.76	61	0.022	6	0.794	-169
130	0.821	-171	2.45	59	0.021	12	0.799	-170
140	0.828	-171	2.27	56	0.022	18	0.806	-169
150	0.836	-171	2.10	53	0.028	25	0.805	-169
160	0.861	-172	1.96	51	0.032	-6	0.823	-168
170	0.863	-173	1.77	49	0.020	-4	0.836	-166
180	0.869	-173	1.63	46	0.018	5	0.881	-169
190	0.872	-174	1.52	44	0.017	14	0.894	-169
200	0.873	-175	1.41	43	0.017	25	0.888	-171
210	0.877	-176	1.28	42	0.018	36	0.877	-171
220	0.880	-176	1.18	41	0.019	46	0.868	-171
230	0.881	-177	1.15	38	0.024	51	0.926	-173
240	0.877	-178	1.09	35	0.031	56	0.893	-174
250	0.857	-180	1.04	33	0.049	55	0.903	-173
260	0.758	-178	0.95	31	0.090	24	0.903	-172
270	0.862	-171	0.87	31	0.056	-33	0.933	-173
280	0.902	-174	0.85	32	0.027	-39	0.949	-174
290	0.913	-176	0.77	30	0.017	-28	0.891	-175
300	0.919	-177	0.72	30	0.012	-8	0.894	-175
310	0.922	-178	0.71	28	0.012	11	0.913	-175
320	0.925	-178	0.67	26	0.012	28	0.896	-175
330	0.927	-179	0.64	24	0.012	40	0.929	-176
340	0.929	-179	0.62	24	0.013	46	0.925	-179
350	0.931	-180	0.58	24	0.015	52	0.942	-174
360	0.934	180	0.55	24	0.017	55	0.944	-176
370	0.937	179	0.52	23	0.019	61	0.944	-176
380	0.940	179	0.49	21	0.020	68	0.919	-175
390	0.941	178	0.45	22	0.020	69	0.938	-177
400	0.942	178	0.46	18	0.021	73	0.920	-173
410	0.941	177	0.45	19	0.023	67	0.961	-178
420	0.943	177	0.44	18	0.026	67	0.945	-178
430	0.945	176	0.41	16	0.029	70	0.959	-179

Table 1. Common Source S-Parameters (VDS = 24 V, ID = 0.4 A) (continued)

f	S-	11	S	21	s ₁₂		S	22
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	\$ ₂₂	ф
440	0.947	176	0.38	16	0.029	75	0.962	-179
450	0.949	176	0.38	19	0.030	78	0.984	-178
460	0.952	175	0.36	17	0.029	72	0.987	178
470	0.953	175	0.34	18	0.030	70	0.976	179
480	0.952	174	0.34	14	0.035	69	0.968	179
490	0.952	174	0.34	14	0.039	72	0.987	178
500	0.952	174	0.32	13	0.040	76	1.002	179
600	0.938	170	0.22	9	0.047	117	1.013	172
700	0.962	166	0.19	13	0.060	73	0.993	171
800	0.953	162	0.17	18	0.097	68	0.981	171
900	0.953	159	0.14	21	0.097	65	0.949	166
1000	0.952	156	0.14	27	0.110	68	0.982	163

Table 2. Common Source S-Parameters (V_{DS} = 28 V, I_{D} = 0.435 A)

f	S	11	S	21	S	s ₁₂		22
MHz	S ₁₁	ф	S ₂₁	ф	S ₁₂	ф	S ₂₂	ф
30	0.803	-153	13.50	89	0.028	3	0.746	-157
40	0.742	-160	9.90	90	0.026	9	0.686	-164
50	0.752	-163	7.48	85	0.025	8	0.692	-168
60	0.773	-163	6.62	80	0.026	4	0.739	-167
70	0.794	-164	5.91	74	0.026	1	0.761	-167
80	0.803	-166	5.04	70	0.025	1	0.763	-167
90	0.812	-167	4.32	68	0.024	1	0.783	-167
100	0.819	-168	3.81	64	0.022	1	0.798	-168
110	0.818	-169	3.44	62	0.022	3	0.797	-168
120	0.817	-170	3.03	61	0.021	9	0.779	-168
130	0.823	-171	2.68	59	0.020	15	0.784	-170
140	0.830	-171	2.49	57	0.021	21	0.793	-169
150	0.838	-171	2.30	53	0.027	27	0.792	-169
160	0.864	-172	2.16	52	0.030	-5	0.816	-167
170	0.865	-173	1.95	49	0.019	-2	0.827	-166
180	0.870	-173	1.79	46	0.017	8	0.869	-168
190	0.873	-174	1.67	44	0.016	18	0.882	-168
200	0.874	-175	1.55	43	0.017	27	0.878	-171
210	0.878	-176	1.40	42	0.017	37	0.866	-171
220	0.881	-176	1.29	41	0.019	47	0.858	-171
230	0.881	-177	1.25	38	0.025	53	0.918	-172
240	0.877	-178	1.20	35	0.031	59	0.882	-173
250	0.856	-180	1.13	33	0.048	57	0.893	-173
260	0.760	-178	1.03	31	0.088	24	0.899	-172
270	0.864	-171	0.96	31	0.056	-33	0.931	-172
280	0.903	-174	0.93	32	0.027	-38	0.946	-173
290	0.914	-176	0.85	30	0.015	-25	0.885	-174


Table 2. Common Source S-Parameters (VDS = 28 V, ID = 0.435 A) (continued)

f	f \$11		s ₂₁		s	12	s ₂₂		
MHz	S ₁₁	ф	\$ ₂₁	ф	S ₁₂	ф	S ₂₂	ф	
300	0.919	-177	0.79	30	0.010	-7	0.881	-175	
310	0.922	-178	0.78	28	0.009	6	0.903	-175	
320	0.925	-178	0.75	26	0.010	18	0.900	-175	
330	0.927	-179	0.70	24	0.012	31	0.925	-176	
340	0.929	-180	0.68	24	0.014	45	0.920	-178	
350	0.931	180	0.63	25	0.015	63	0.932	-173	
360	0.934	179	0.61	23	0.014	70	0.931	-176	
370	0.936	179	0.57	23	0.013	68	0.929	-176	
380	0.939	178	0.53	21	0.015	61	0.909	-176	
390	0.941	178	0.50	22	0.018	61	0.940	-178	
400	0.941	178	0.50	18	0.022	74	0.917	-173	
410	0.940	177	0.49	19	0.024	80	0.955	-178	
420	0.941	177	0.48	18	0.022	83	0.942	-178	
430	0.943	176	0.46	16	0.020	77	0.957	-179	
440	0.946	176	0.42	16	0.022	69	0.960	-178	
450	0.948	175	0.41	18	0.029	71	0.982	-177	
460	0.951	175	0.39	17	0.032	76	0.983	178	
470	0.951	175	0.37	17	0.031	88	0.968	179	
480	0.950	174	0.37	13	0.027	93	0.965	179	
490	0.950	174	0.37	13	0.025	81	0.994	179	
500	0.950	173	0.36	12	0.031	69	1.012	180	
600	0.936	170	0.24	7	0.063	127	1.005	171	
700	0.960	166	0.20	11	0.064	72	0.989	171	
800	0.953	162	0.17	15	0.092	66	1.017	169	
900	0.954	159	0.15	19	0.092	65	0.952	167	
1000	0.952	156	0.15	24	0.082	56	0.988	162	

Rev. V1

PACKAGE DIMENSIONS

MRF177

The RF MOSFET Line 100W, 400MHz, 28V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF MOSFET Transistors category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

MRF492 MRFE8VP8600HR5 ARF1511 ARF465BG BF 2030 E6814 BLF861A DU1215S DU28200M UF28100M DU2820S MRF426
ARF468AG ARF468BG MAPHST0045 DU2860U MRFE6VP5300NR1 BF2040E6814HTSA1 LET9060S MRF136Y BF999E6327HTSA1
SD2931-12MR BF998E6327HTSA1 AFT05MS006NT1 MRF141 MRF171 MRF172 MRF174 SD2942 QPD1020SR BF 1005S E6327
MRF134 MRF136 MRF137 MRF141G MRF151A MRF151G MRF157 MRF158 MRF160 MRF166C MRF171A MRF177 UF2840G
TGF3021-SM ARF1510 ARF448BG ARF449AG ARF466BG VRF150 VRF3933