Features

- Wide Frequency Range: 50 MHz to 6 GHz , in 3 bands
- Surface Mount SP2T Switch in Compact Outline: $8 \mathrm{~mm} \mathrm{~L} \times 5 \mathrm{~mm} \mathrm{~W} \times 2.5 \mathrm{~mm} \mathrm{H}$
- Higher Average Power Handling than Plastic Packaged
- MMIC Switches: 100 W CW
- High RF Peak Power: 500 W
- Low Insertion Loss: 0.25 dB
- High IIP3: 65 dBm
- Operates From Positive Voltage Only: 5 V \& 28 V to 125 V
- RoHS* Compliant

Applications

- High Power Transmit / Receive Switching
- Active Receiver Protection

Description

The MSW203x-203 series of surface mount silicon PIN diode SP2T switches handle high power signals from 50 MHz to 1 GHz (MSW2030), 400 MHz to 4 GHz (MSW2031) and 2 to 6 GHz (MSW2032), in transmit-receive (TR), active receiver protection and other applications. This series is manufactured using a proven hybrid manufacturing process incorporating high voltage PIN diodes and passive devices integrated within a ceramic substrate. These low profile, compact, surface mount components, offer superior small and large signal performance superior to that of MMIC devices in QFN packages. The SP2T switches are designed in an asymmetrical topology to minimize Tx-Ant loss and maximize TxRx isolation performance. The very low thermal resistance $\left(<25^{\circ} \mathrm{C} / \mathrm{W}\right)$) of the PIN diodes in these devices enables them to reliably handle RF incident power levels of 50 dBm CW and RF peak incident power levels of 57 dBm in cold switching applications at $T_{A}=85^{\circ} \mathrm{C}$. The thick I-layers of the PIN diodes ($>100 \mu \mathrm{~m}$), coupled with their long minority carrier lifetime, $(>2 \mu \mathrm{~s})$, provides input third order intercept point (IIP3) greater than 65 dBm .

These MSW203x-203 series SP2T switches are designed to be used in high average and peak power switch applications, operating from 50 MHz to 6 GHz in three bands, which utilize high volume, surface mount, solder re-flow manufacturing. These products are durable and capable of reliably operating in military, commercial, and industrial environments.

Functional Schematic

Ordering Information

Part Number	Package
MSW2030-203-T	tube
MSW2030-203-R	250 or 500 piece reel
MSW2030-203-W	Waffle pack
MSW2031-203-T	tube
MSW2031-203-R	250 or 500 piece reel
MSW2031-203-W	Waffle pack
MSW2032-203-T	tube
MSW2032-203-R	250 or 500 piece reel
MSW2032-203-W	Waffle pack
MSW2030-203-E	RF evaluation board
MSW2031-203-E	RF evaluation board
MSW2032-203-E	RF evaluation board

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MSW2030-203 Electrical Specifications: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Frequency	-	MHz	50	-	1000
Insertion Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	-	0.3	0.4
Return Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	20	22	-
Isolation	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	50	52	-
CW Incident Power ${ }^{1}$	source \& load VSWR = 1.5:1	dBm	-	50	51
Peak Incident Power ${ }^{1}$	source \& load VSWR = 1.5:1 pulse width $=10 \mu \mathrm{~s}$, duty cycle $=1 \%$	dBm	-	57	-
Switching Time ${ }^{2}$	10\% - 90\% RF Voltage, TTL rep rate $=100$	$\mu \mathrm{s}$	-	2	3
Input IP3	$\mathrm{F} 1=500 \mathrm{MHz}, \mathrm{~F} 2=510 \mathrm{MHz}, \mathrm{P} 1=\mathrm{P} 2=10 \mathrm{dBm}$ measured on path biased to low loss state	dBm	60	65	-

MSW2031-203 Electrical Specifications: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Frequency	-	MHz	400	-	4000
Insertion Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	-	0.5	0.6
Return Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	14	16	-
Isolation	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	32	35	-
CW Incident Power ${ }^{1}$	source \& load VSWR = 1.5:1	dBm	-	50	51
Peak Incident Power ${ }^{1}$	source \& load VSWR = 1.5:1 pulse width $=10 \mu \mathrm{~s}$, duty cycle $=1 \%$	dBm	-	57	-
Switching Time ${ }^{2}$	$\begin{gathered} 10 \%-90 \% \text { RF Voltage, } \\ \text { TTL rep rate }=100 \end{gathered}$	$\mu \mathrm{s}$	-	1	2
Input IP3	$\mathrm{F} 1=1000 \mathrm{MHz}, \mathrm{~F} 2=1010 \mathrm{MHz}, \mathrm{P} 1=\mathrm{P} 2=10 \mathrm{dBm}$ measured on path biased to low loss state	dBm	60	65	-

Continued

MSW2032-203 Electrical Specifications: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}, \mathrm{Z}_{\mathbf{0}}=50 \Omega$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Frequency	-	GHz	2	-	6
Insertion Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	-	0.6	0.8
Return Loss	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	11	13	-
Isolation	bias state 1: port J0 to J1 bias state 2: port J0 to J2	dB	32	35	-
CW Incident Power ${ }^{1}$	source \& load VSWR $=1.5: 1$	dBm	-	50	51
Peak Incident Power ${ }^{1}$	source \& load VSWR = 1.5:1 pulse width $=10 \mu \mathrm{~s}$, duty cycle $=1 \%$	dBm	-	57	-
Switching Time ${ }^{2}$	10\% - 90\% RF Voltage, TTL rep rate $=100$	$\mu \mathrm{S}$	-	1	2
Input IP3	$\text { F1 }=2000 \mathrm{MHz}, \mathrm{~F} 2=2010 \mathrm{MHz}, \mathrm{P} 1=\mathrm{P} 2=10 \mathrm{dBm}$ measured on path biased to low loss state	dBm	60	65	-

Bias State Conditions:

State 1:

(J0 - J1 in low insertion loss state, J0 - J2 in isolation state)
a. B1: $\mathrm{V}_{\text {нін }}$ (note 2), 0 mA
b. B2: $-25 \mathrm{~mA}, 0 \mathrm{~V}$
c. J1: - $100 \mathrm{~mA}, 0 \mathrm{~V}$
d. J2: $25 \mathrm{~mA}, \mathrm{~V}_{\text {HiGH }}$ (note 2)
e. $\mathrm{JO}: 100 \mathrm{~mA}, \approx 0.9 \mathrm{~V}$

State 2:
(JO - J2 in low insertion loss state, J0 - J1 in isolation state)
a. $\mathrm{B} 1:-25 \mathrm{~mA}, 0 \mathrm{~V}$
b. B2: $\mathrm{V}_{\text {HIGH }}$ (note 2), 0 mA
c. J1: $25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{HIGH}}$ (note 2)
d. J2: - $100 \mathrm{~mA}, 0$ V
e. J0: $100 \mathrm{~mA}, \approx 0.9 \mathrm{~V}$

1. Switching time (50% TTL - 10/90\% RF Voltage) is a function of the PIN diode driver performance as well as the characteristics of the diode. An RC "current spiking network" is used on the driver output to provide a transient current to rapidly remove stored charge from the PIN diode. Typical component values are: $R=50$ to 220Ω and $C=470$ to $1,000 \mathrm{pF}$.
2. PIN diode DC reverse voltage to maintain high resistance in the OFF PIN diode is determined by RF frequency, incident power, and VSWR as well as by the characteristics of the diode. The minimum reverse bias voltage values are provided in this datasheet.

Truth Table ${ }^{3,4}$: + $\mathrm{V}_{\mathrm{cc}} 1=5 \mathrm{~V}$ and $+\mathrm{V}_{\mathrm{cc}} \mathbf{2}=\mathbf{2 8} \mathrm{V}$ (unless otherwise noted)

J0 - J1	J0 - J2	Bias: J1	Bias: J2	B1	B2
Low Loss	Isolation	$0 \mathrm{~V},-100 \mathrm{~mA}$	$\mathrm{~V}_{\text {HIGH }}, 25 \mathrm{~mA}$	$\mathrm{~V}_{\text {HIGH }}, 0 \mathrm{~mA}$	$0 \mathrm{~V},-25 \mathrm{~mA}$
Isolation	Low Loss	$\mathrm{V}_{\text {HIGH }}, 25 \mathrm{~mA}$	$0 \mathrm{~V},-100 \mathrm{~mA}$	$0 \mathrm{~V},-25 \mathrm{~mA}$	$\mathrm{~V}_{\text {HIGH, }} 0 \mathrm{~mA}$

3. $28 \mathrm{~V} \leq \mathrm{V}_{\mathrm{HIGH}} \leq 125 \mathrm{~V}$.
4. PIN diode minimum reverse DC voltage $\left(\mathrm{V}_{\mathrm{HIGH}}\right)$ to maintain high resistance in the OFF PIN diode is determined by RF frequency, incident power, duty cycle, characteristic impedance and VSWR as well as by the characteristics of the diode. The recommended minimum reverse bias voltage ($\mathrm{V}_{\mathrm{HIGH}}$) values are provided in the Minimum Reverse Bias Voltage table.

RF Bias Network Component Values

Part \#	Frequency (MHz)	Inductors	DC Blocking Capacitors	RF Bypass Capacitors	Secondary Bypass Capacitors
MSW2030-203	$50-1000$	Ferrite Bead, $600 \Omega, 1 \mathrm{~A}$	470 pF	470 pF	470 pF
MSW2031-203	$400-4000$	43 nH	47 pF	220 pF	1000 pF
MSW2032-203	$2000-6000$	33 nH	22 pF	33 pF	1000 pF

Minimum Reverse Bias Voltage ${ }^{5}$: $P_{\mathrm{INC}}=125 \mathrm{~W} C W, Z_{0}=50 \Omega$ with 1.5:1 VSWR

Part \#	$\mathbf{2 0 ~ M H z}$	$\mathbf{1 0 0 ~ M H z}$	$\mathbf{2 0 0 ~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$	$\mathbf{1 G H z}$	$\mathbf{4 G H z}$
MSW2030-203	120 V	110 V	85 V	55 V	28 V	$\mathrm{~N} / \mathrm{A}$
MSW2031-203	N / A	N / A	110 V	85 V	55 V	28 V
MSW2032-203	$(\mathrm{F}=1 \mathrm{GHz})$ 55 V	$(\mathrm{F}=2 \mathrm{GHz})$ 28 V	$(\mathrm{F}=3 \mathrm{GHz})$ 28 V	$(\mathrm{F}=4 \mathrm{GHz})$ 28 V	$(\mathrm{F}=5 \mathrm{GHz})$ 28 V	$(\mathrm{F}=6 \mathrm{GHz})$ 28 V

5. N/A denotes the switch is not recommended for that frequency band.

The minimum reverse bias voltage required to maintain a PIN diode out of conduction in the presence of a large $R F$ signal is given by:

Where:

$$
\left|V_{D C}\right|=\frac{\left|V_{R F}\right|}{\sqrt{1+\left[\left(\frac{0.0142 \times f_{M H z} \times W_{\text {mils }}^{2}}{V_{R F} \times \sqrt{D}}\right) \times\left(1+\sqrt{1+\left(\frac{0.056 \times V_{R F} \times \sqrt{D}}{W_{\text {mils }}}\right)^{2}}\right)\right]^{2}}}
$$

$\left|V_{D C}\right|=$ magnitude of the minimum $D C$ reverse bias voltage
$\left|V_{R F}\right|=$ magnitude of the peak RF voltage (including the effects of the VSWR)
$\mathrm{F}_{\mathrm{MHz}}=$ lowest RF signal frequency expressed in MHz
$D \quad=$ duty factor of the RF signal
$\mathrm{W}_{\text {MLS }}=$ thickness of the diode I layer, expressed in mils (thousands of an inch)
R. Caverly and G. Hiller, -Establishing the Minimum Reverse Bias for a PIN Diode in a High Power Switch, IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990

Absolute Maximum Ratings

Parameter	Conditions	Absolute Maximum
Forward Current	J0, J1, J2 Port B1, B2 Port	$\begin{aligned} & 250 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$
Reverse Voltage	J0, J1, J2, B1, B2 Port	200 V
Forward Diode Voltage	$\mathrm{I}_{\mathrm{F}}=250 \mathrm{~mA}$	1.2 V
CW Incident Power Handling ${ }^{6}$	Source \& Load VSWR $=1.5: 1$, $T_{C}=85^{\circ} \mathrm{C}$, cold switching	50 dBm
Peak Incident Power Handling ${ }^{6}$	Source \& Load VSWR $=1.5: 1, \mathrm{~T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$, cold switching, Pulse Width $=10 \mu \mathrm{~s}$, Duty Cycle $=1 \%$	57 dBm
Total Dissipated RF \& DC Power ${ }^{6}$	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$, cold switching	8 W
Junction Temperature	-	$+175^{\circ} \mathrm{C}$
Operating Temperature	-	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	-	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Assembly Temperature	$\mathrm{t}=10 \mathrm{~s}$	$+260^{\circ} \mathrm{C}$

6. Backside RF and DC grounding area of device must be completely solder attached to the RF circuit board vias for proper electrical and thermal circuit grounding.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices. The moisture sensitivity level (MSL) rating for this part is 1 .

Environmental Capabilities

The MSW203x-203 diode is capable of meeting the environmental requirements of MIL-STD-202 and MIL-STD-750.

MSW2030-203 Small Signal Typical Performance

$Z_{0}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$ (Unless Otherwise Defined)

MSW2031-203 Small Signal Typical Performance

$Z_{0}=50 \Omega, T_{\alpha}=+25^{\circ} \mathrm{C}$ (Unless Otherwise Defined)

MSW2032-203 Small Signal Typical Performance

$Z_{0}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$ (Unless Otherwise Defined)

SP2T Switch Evaluation Board Schematic

The evaluation boards for the MSW203x-203 family of surface mount silicon PIN diode SP2T T-R switches allow the full exercise of each switch for small signal performance analysis, as well as for large signal operation with maximum input signal power of 45 dBm (CW or peak power). Each evaluation board includes the appropriate MSW203x -203 switch, DC blocking capacitors at each RF port and bias decoupling networks at each RF port which allow DC or low frequency control signals to be applied to the switch.

Four complementary control signals are required for proper operation. Bias voltages are applied to the B1 and B 2 bias ports, as well as to the $\mathrm{J} 0, \mathrm{~J} 1$, and J 2 RF ports to control the state of the switch. Afixed bias voltage must be applied to the JO port (connect 5 V to pin 3 of multi-pin connector P1) whenever the switch is in operation.

Caution: the evaluation board, as supplied from the factory, is not capable of handling RF input signals larger than 45 dBm . If performance of the switch under larger input signals is to be evaluated, several of the passive components on the board must be changed in order to safely handle the dissipated power as well as the high bias voltage necessary for proper performance. The evaluation board must be connected to an adequate heat sink for large signal operation. Contact the factory for recommended components.

For the purposes of description, State 1 is defined to be the condition in which the evaluation board is biased to produce the low insertion condition between ports JO and J1 while producing high isolation between ports JO and J2. State 2 is the converse of State 1.

State 1

In State 1, the series PIN diode between J0 and J1 ports is forward biased by applying 0 V to the J 1 bias input port (pin 1 of multi-pin connector P1). The magnitude of the resultant bias current through the diode is primarily determined by the voltage applied to the J0 bias port (pin 3 of P1), the magnitude of the forward voltage across the PIN diode and the resistance of R1. This current is nominally 100 mA . At the same time, the PIN diode connected between J 2 and B 2 ports is also forward biased by applying a higher bias voltage, nominally 28 V , to the J 2 bias port (pin 7 of P1) and 0 V to the B2 bias port (pin 5 of P1). Under this condition, the PIN diode connected between the J 0 and J 2 port is reverse biased and the PIN diode connected between the J2 and B2 ports is forward biased. The magnitude of the bias current through this diode is primarily determined by the voltage applied to the J2 bias port, the magnitude of the forward voltage across the PIN diode and the resistance of R 4 . This current is nominally 25 mA .

The series PIN diode, which is connected between the J0 and J2 ports, must be reverse biased during the state 1. The reverse bias voltage must be sufficiently large to maintain the diode in its nonconducting, high impedance state when large RF signal voltage may be present in the J0-to-J1 path. The reverse voltage across this diode is the arithmetic difference of the bias voltage applied to the JO bias port and the DC forward voltage of the forward-biased J0-to-J1 series PIN diode.

The minimum voltage required to maintain the series diode between J0 and J2 out of conduction is a function of the magnitude of the RF voltage present, the standing wave present at the series diode's anode, the frequency of the RF signal and the characteristics of the series diode, among other factors. Minimum control voltages for several signal frequencies are shown in the table "Minimum Reverse Bias Voltage", assuming the input power to the J0 or J1 port to be 100 W CW and the VSWR on the J0-J1 path to be 1.5:1.

State 2

In State 2, the series PIN diode between the J0 and J 2 ports is forward biased by applying 0 V to the J 2 bias input port (pin 7 of multi-pin connector P1). The magnitude of the resultant bias current through the diode is primarily determined by the voltage applied to the J0 bias port (pin 3 of P1), the magnitude of the forward voltage across the PIN diode and the resistance of R1. This current is nominally 100 mA . At the same time, the PIN diode connected between J 2 and B2 ports is reverse biased by applying a high bias voltage, nominally 28 V , to the B 2 bias port (pin 5 of P 1). A high voltage, nominally 28 V , is also applied to the J1 bias port (pin 1 of P1). Under this condition, the PIN diode connected between the JO and J 1 port is reverse biased thus isolating the J 1 RF port from the RX signal path between J0 and J2. The reverse voltage across this diode is the arithmetic difference of the bias voltage applied to the J1 bias port and the DC forward voltage of the forward-biased J0-to-J2 series PIN diode. The minimum voltage required to maintain the series diode on the J0-to-J1 side of the switch out of conduction is a function of the magnitude of the RF voltage present, the standing wave present at the diode's anode, the frequency of the RF signal and the characteristics of the TX series diode, among other factors.

The values of the reactive components which comprise the bias decoupling networks as well as the signal path DC blocking are shown in the table RF Bias Network Component Values.

Reference Path

A reference path is provided on the evaluation board, complete with bias decoupling networks, so that the magnitude of the insertion loss of the microstrip transmission lines connected to the switch and the associated bias decoupling components can be measured and removed from the measured performance of the switch.

SP2T Switch Evaluation Board Layouts

APPLIES TO THE FOLLOWING EVAL BOARDS: CS203/CS204 - BAND 1/BAND 2

APPLIES TO THE FOLLOWING EVAL BOARDS: CS203/CS204 - BAND 3

Evaluation Board Parts List

MSW2030-203 Band 1		
Part	Value	Case Style
C1, C5, C7, C13, C15	470 pF	0603
C2, C6, C8, C9, C10, C14, C16, C19	470 pF	0603
C3, C4, C11, C12, C17, C18, C20, C21	470 pF	0603
L1- L7	600Ω	0603
R1, R3	39Ω	2512
R2	1200Ω	2512

MSW2031-203 Band 2		
Part	Value	Case Style
C1, C5, C7, C13, C15	47 pF	0603
C2, C6, C8, C9, C10, C14, C16, C19, C22	220 pF	0603
C. C3, C4, C11, C12, C17, C18, C20, C21	1000 pF	0603
L1- L7	43 nH	0603
R1, R3	39Ω	2512
R2, R4	1200Ω	2512

MSW2032-203 Band 3		
Part	Value	Case Style
C1, C5, C7, C13, C15	22 pF	0603
C2, C6, C8, C9, C10, C14, C16	33 pF	0603
C C3, C4, C10, C11, C12, C17, C18	1000 pF	0603
L1- L7	33 nH	0805
R1	39Ω	2512
R2, R3	1200Ω	2512

7. Second bypass capacitor is optional.

MSW203x-203 with MADR-010574 Driver Application Schematic ${ }^{8}$

8. See page 11 for $\mathrm{R} 1, \mathrm{~L} 1-\mathrm{L} 7$ and $\mathrm{C} 1-\mathrm{C} 22$ values. $\mathrm{P} 1-\mathrm{J} 0$ set to V_{Cc}.

Parts List

Part	Value
C 23	$0.01 \mu \mathrm{~F}$
$\mathrm{C} 24-\mathrm{C} 26$	$0.1 \mu \mathrm{~F}$
$\mathrm{R} 2, \mathrm{R} 4{ }^{9}$	$12 \mathrm{~K} \Omega$
R 3	$499 \mathrm{~K} \Omega$
U 2	$\mathrm{SN} 74 \mathrm{AHC1G}$

9. Resistor value calculated to provide $\sim 10 \mathrm{~mA}$ of shunt diode bias current given $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=120 \mathrm{~V}$.

Assembly Instructions

SP2T PIN Diodes may be placed onto circuit boards with pick and place manufacturing equipment from tape and reel. The devices are attached to the circuit using conventional solder re-flow or wave soldering procedures with RoHS type or $\mathrm{Sn} 60 / \mathrm{Pb} 40$ type solders.

Table 1. Time-Temperature Profile for Sn60/Pb4O or RoHS Type Solders

Profile Feature	SnPb Solder Assembly	Pb-Free Solder Assembly
Average Ramp-Up Rate (T_{L} to T_{p})	$3^{\circ} \mathrm{C} /$ second maximum	$3^{\circ} \mathrm{C} /$ second maximum
Preheat: - Temperature Min ($\mathrm{T}_{\text {SMIN }}$) - Temperature Max ($\mathrm{T}_{\text {SMAX }}$) - Time (min to max) (t_{s})	$\begin{array}{r} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \mathrm{~S} \\ \hline \end{array}$	$\begin{array}{r} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \mathrm{~S} \\ \hline \end{array}$
$\begin{aligned} & \mathrm{T}_{\text {SMAX }} \text { to } \mathrm{T}_{\mathrm{L}} \\ & \text { - Ramp-Up Rate } \\ & \hline \end{aligned}$		$3^{\circ} \mathrm{C} / \mathrm{s}$ maximum
Time Maintained Above: - Temperature (T_{L}) - Time (t)	$\begin{array}{r} 183^{\circ} \mathrm{C} \\ 60-150 \mathrm{~s} \\ \hline \end{array}$	$\begin{array}{r} 217^{\circ} \mathrm{C} \\ 60-150 \mathrm{~s} \\ \hline \end{array}$
Peak temperature (T_{p})	$225+0 /-5^{\circ} \mathrm{C}$	$260+0 /-5^{\circ} \mathrm{C}$
Time Within $5^{\circ} \mathrm{C}$ of Actual Peak Temperature (t_{p})	$10-30 \mathrm{~s}$	$20-40 \mathrm{~s}$
Ramp-Down Rate	$6^{\circ} \mathrm{C} / \mathrm{s}$ maximum	$6^{\circ} \mathrm{C} / \mathrm{s}$ maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	6 minutes maximum	8 minutes maximum

Figure 1. Solder Re-Flow Time-Temperature Profile

Outline (CS203) ${ }^{10,11}$

10. Hatched metal area on circuit side of device is RF, DC and thermal grounded.
11. Vias should be solid copper fill and gold plated for optimum heat transfer from backside of switch module through circuit vias to metal thermal ground.

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.
These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for PIN Diodes category:
Click to view products by MACOM manufacturer:
Other Similar products are found below :
MA45471 MA4SPS502 APD2220-000 APD0810-000 MA4GP907 MA4L032-186 MA4L401-30 MA4P606-258 MA4P7435NM-1091T MA4PK2000 MA4PK2001 MA4PK2004 MADP-007167-12250T MADP-030025-13140P MA4PBL027 MA4AGFCP910 MA4P7101F1072T MA4L022-30 MA47047-54 BAR 89-02LRH E6327 UM7108B UM9701 1SV308,L3F UM9301SM 5082-3077 GC4723-42 MA4L011-1088 MSW2001-200 SMP1321-000 M17X1008 UM4010SM UM6002B UM7006A UM7006B UM7108C GC4742-42 MADP-000015-000030 MGPN1503-C01A UMX512 LXP1000-23-2 LXP1004-23-2 MPP4201-206 LXP1002-23-0 LXP1004-23-0 MPP4202-206 MPP4205-206 SMP1321-011LF MA4L021-1056 MSW2031-203 MLP7120-11

