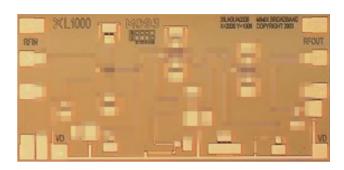


Rev. V2

#### **Features**


- · Self Bias Architecture
- Small Size
- 3 or 5 V Operation
- 20 dB Small Signal Gain
- 2 dB Noise Figure
- 9 dBm P1dB Compression Point
- 100% On-Wafer RF, DC and Noise Figure Testing
- 100% Visual Inspection to MIL-STD-883 Method 2010
- RoHS\* Compliant and 260°C Reflow Compatible

### **Description**

The XL1000-BD is a 3-stage 20 - 40 GHz GaAs MMIC low noise amplifier that has a small signal gain of 20 dB with a noise figure of 2 dB across the band. This MMIC uses a GaAs pHEMT device model technology, and is based upon electron beam lithography to ensure high repeatability and uniformity. The chip has surface passivation to protect and provide a rugged part with backside via holes and gold metallization to allow either a conductive epoxy or eutectic solder die attach process.

This device is well suited for Millimeter-wave Point-to -Point Radio, LMDS, SATCOM and VSAT applications.

### **Chip Device Layout**



### **Ordering Information**

| Part Number    | Package                          |  |  |
|----------------|----------------------------------|--|--|
| XL1000-BD-000V | "V" - vacuum release<br>gel paks |  |  |



Rev. V2

## Electrical Specifications: Freq. = 20 - 40 GHz, $V_D$ = 5 V, $I_D$ = 50 mA, $T_A$ = +25°C

| Parameter                              | Test Conditions                     | Units | Min. | Тур. | Max. |
|----------------------------------------|-------------------------------------|-------|------|------|------|
| Input Return Loss                      | 22 - 36 GHz                         | dB    | 6    | 12   | _    |
| Output Return Loss                     | 22 - 36 GHz                         | dB    | 4    | 10   | _    |
| Small Signal Gain                      |                                     | dB    | 12   | 20   | _    |
| Gain Flatness                          | _                                   | dB    | _    | +/-4 | _    |
| Reverse Isolation                      |                                     | dB    | 30   | 45   | _    |
| Noise Figure                           | 24 - 40 GHz                         | dB    | _    | 2    | 3    |
| Output Power for 1dB Compression Point | 5 V                                 | dBm   | _    | 9    | _    |
| Output Third Order Intercept Point     | 5 V                                 | dBm   | _    | 16   | _    |
| Drain Bias Voltage                     | _                                   | VDC   | _    | 3    | 5    |
| Supply Current                         | $V_D = 3 \text{ V or } 5 \text{ V}$ | mA    | _    | 35   | 50   |

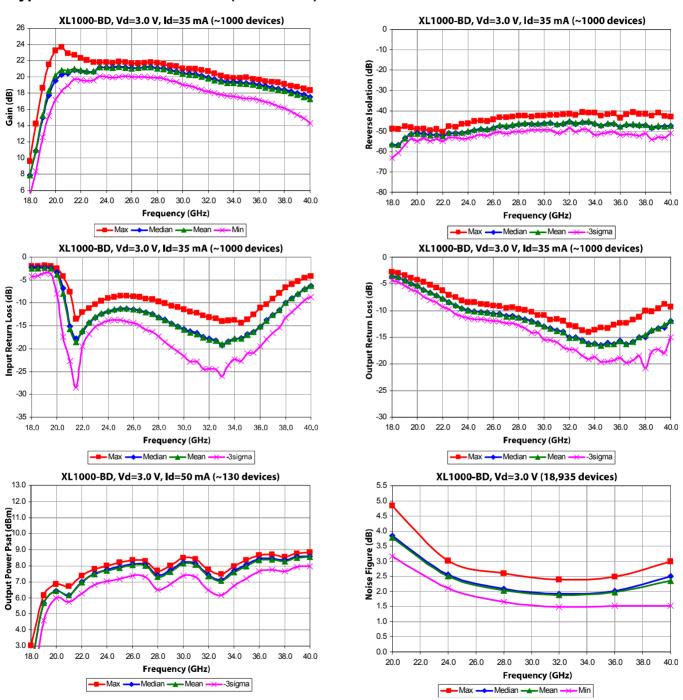
### **Absolute Maximum Ratings**

| Parameter             | Absolute Maximum  |  |  |  |
|-----------------------|-------------------|--|--|--|
| Supply Voltage        | 7 V <sub>DC</sub> |  |  |  |
| Supply Current        | 70 mA             |  |  |  |
| Input Power           | 12 dBm            |  |  |  |
| Storage Temperature   | -65°C to +165°C   |  |  |  |
| Operating Temperature | -55°C to +85°C    |  |  |  |
| Channel Temperature   | +175°C            |  |  |  |

Channel temperature directly affects a device's MTTF.
 Channel temperature should be kept as low as possible to maximize lifetime.

### **Handling Procedures**

Please observe the following precautions to avoid damage:

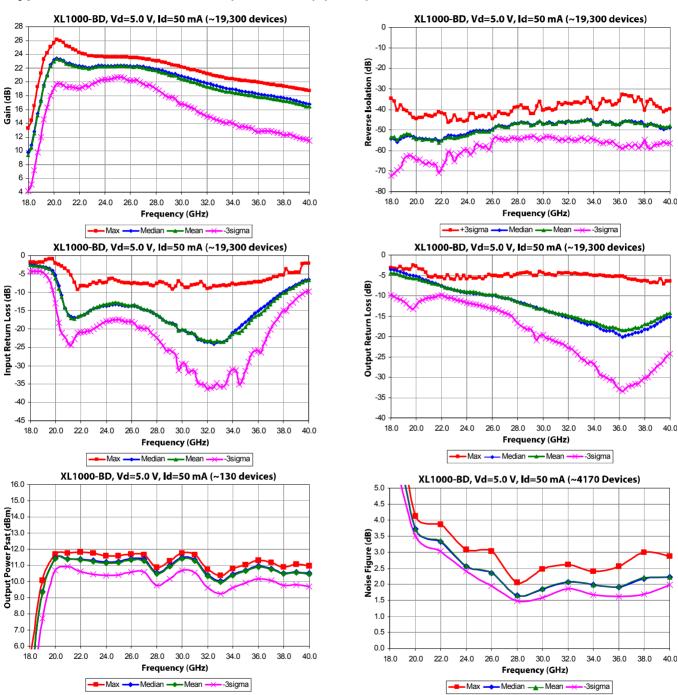

### **Static Sensitivity**

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.



Low Noise Amplifier
20 - 40 GHz
Rev. V2

### Typical Performance Curves (On-Wafer<sup>1</sup>)




Note [1] Measurements – On-Wafer data has been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge. For optimum performance M/A-COM-Tech T-pad transition is recommended. For additional information see the M/A-COM-Tech "T-Pad Transition" application note.



Rev. V2

## Typical Performance Curves (On-Wafer<sup>1</sup>) (cont.)



Note [1] Measurements – On-Wafer data has been taken using bias conditions as shown. Measurements are referenced 150 um in from RF In/Out pad edge. For optimum performance M/A-COM-Tech T-pad transition is recommended. For additional information see the M/A-COM-Tech "T-Pad Transition" application note.

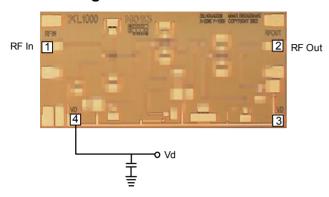
## XL1000-BD



Low Noise Amplifier 20 - 40 GHz

Rev. V2

## S-Parameters (On-Wafer<sup>1</sup>): $V_D = 5 V$ , $I_D = 52 mA$


| frequency<br>(GHz) | S11<br>(mag.) | S11<br>(ang.) | S21<br>(mag.) | S21<br>(ang.) | S12<br>(mag.) | S12<br>(ang.) | S22<br>(mag.) | S22<br>(ang.) |
|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 18                 | 0.746         | -165.97       | 2.544         | 24.56         | 0.0017        | 168.35        | 0.684         | -124.58       |
| 19                 | 0.660         | 149.17        | 6.840         | -14.35        | 0.0024        | 126.40        | 0.625         | -138.66       |
| 20                 | 0.142         | 2.00          | 14.715        | -120.61       | 0.0021        | 52.59         | 0.534         | -163.12       |
| 21                 | 0.100         | -163.20       | 13.152        | -170.24       | 0.0018        | 12.19         | 0.474         | 176.63        |
| 22                 | 0.140         | 129.51        | 12.237        | 154.80        | 0.0017        | -16.42        | 0.395         | 152.50        |
| 23                 | 0.170         | 86.23         | 11.946        | 125.13        | 0.0017        | -49.65        | 0.337         | 128.14        |
| 24                 | 0.200         | 42.30         | 12.003        | 84.11         | 0.0028        | -88.17        | 0.286         | 90.54         |
| 25                 | 0.211         | 21.38         | 11.981        | 58.08         | 0.0024        | -116.99       | 0.274         | 65.73         |
| 26                 | 0.212         | 3.82          | 11.914        | 33.30         | 0.0029        | -127.87       | 0.269         | 43.21         |
| 27                 | 0.191         | -16.13        | 11.573        | -2.82         | 0.0034        | -150.83       | 0.263         | 15.00         |
| 28                 | 0.176         | -25.82        | 11.181        | -25.58        | 0.0038        | -173.21       | 0.254         | -0.75         |
| 29                 | 0.159         | -34.54        | 10.740        | -47.03        | 0.0037        | -176.89       | 0.243         | -14.39        |
| 30                 | 0.127         | -47.28        | 9.961         | -77.92        | 0.0036        | 151.73        | 0.217         | -32.44        |
| 31                 | 0.121         | -53.64        | 9.490         | -96.70        | 0.0037        | 138.19        | 0.206         | -42.09        |
| 32                 | 0.111         | -64.48        | 9.060         | -115.14       | 0.0043        | 118.88        | 0.190         | -51.51        |
| 33                 | 0.111         | -89.94        | 8.472         | -141.75       | 0.0035        | 109.21        | 0.170         | -67.19        |
| 34                 | 0.122         | -110.67       | 8.150         | -158.94       | 0.0021        | 95.25         | 0.160         | -80.04        |
| 35                 | 0.138         | -130.72       | 7.851         | -176.20       | 0.0029        | 104.56        | 0.147         | -92.90        |
| 36                 | 0.185         | -155.73       | 7.420         | 158.47        | 0.0038        | 59.79         | 0.139         | -111.00       |
| 37                 | 0.237         | -171.07       | 7.107         | 140.91        | 0.0030        | 68.81         | 0.136         | -128.23       |
| 38                 | 0.271         | 175.33        | 6.778         | 124.00        | 0.0036        | 40.92         | 0.137         | -144.49       |
| 39                 | 0.382         | 158.32        | 6.264         | 98.04         | 0.0013        | 10.28         | 0.149         | -167.73       |
| 40                 | 0.446         | 148.19        | 5.900         | 80.75         | 0.0028        | -17.50        | 0.162         | 179.76        |
| 41                 | 0.506         | 138.34        | 5.471         | 63.80         | 0.0023        | -7.95         | 0.176         | 167.50        |
| 42                 | 0.591         | 124.05        | 4.767         | 38.77         | 0.0021        | 7.75          | 0.197         | 153.19        |
| 43                 | 0.633         | 115.88        | 4.314         | 22.90         | 0.0020        | -8.93         | 0.210         | 143.72        |

Note [1] S-Parameters – On-Wafer S-Parameters have been taken using bias conditions as shown. Measurements are referenced 150  $\mu$ m in from RF In/Out pad edge.



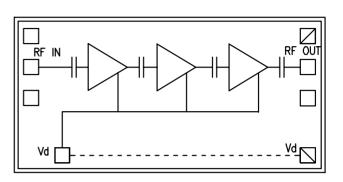
Rev. V2

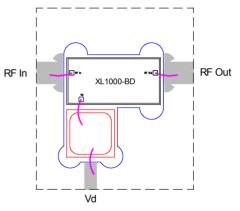
### **Bias Arrangement**



### App Note [1]

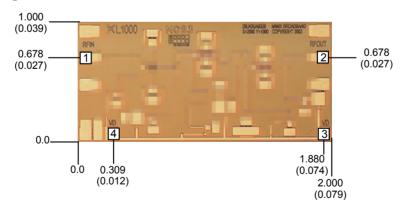
**Biasing** - As shown in the bonding diagram, this device operates using a self-biased architecture and only requires one drain bias.


Bias is nominally:


 $V_D = 3 \text{ V}, I_D = 35 \text{ mA} \text{ or } V_D = 5 \text{ V}, I_D = 50 \text{ mA}$ 

### App Note [2]

Bias Arrangement - Each DC pad  $(V_D)$  needs to have DC bypass capacitance (~100 - 200 pF) as close to the device as possible.


Additional DC bypass capacitance ( $\sim$ 0.01  $\mu$ F) is also recommended.





**Bypass Capacitors** 

### **Mechanical Drawing**



(Note: Engineering designator is 28LN3UA0338)

Units: millimeters (inches) Bond pad dimensions are shown to center of bond pad. Thickness: 0.110 +/- 0.010 (0.0043 +/- 0.0004), Backside is ground, Bond Pad/Backside Metallization: Gold All Bond Pads are  $0.100 \times 0.100 (0.004 \times 0.004)$ .

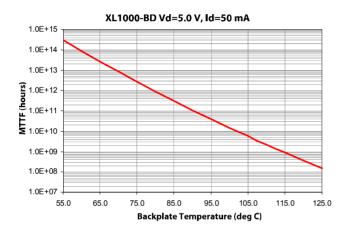
Bond pad centers are approximately 0.109 (0.004) from the edge of the chip. Dicing tolerance: +/- 0.005 (+/- 0.0002). Approximate weight: 1.239 mg.

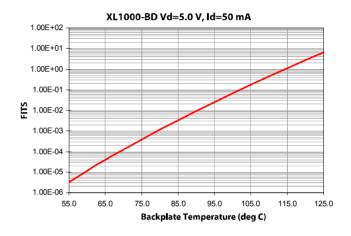
Bond Pad #1 (RFIn)

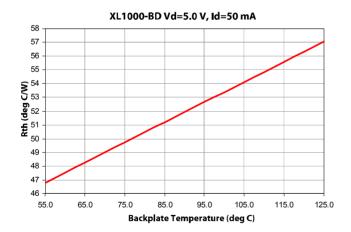
Bond Pad #2 (RFOut)

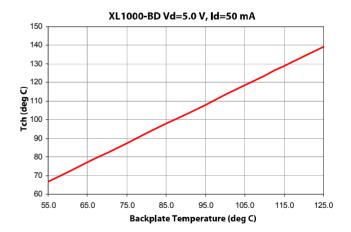
Bond Pad #3 (Vd)

Bond Pad #4 (Vd)


6





Rev. V2


### **MTTF Graphs**

These numbers were calculated based upon accelerated life test information received from the fabricating foundry and extensive thermal modeling/finite element analysis done at MACOM. The values shown here are only to be used as a guideline against the end application requirements and only represent reliability information under one bias condition. Ultimately bias conditions and resulting power dissipation along with the practical aspects, i.e. thermal material stack-up, attach method of device placement are the key parts in determining overall reliability for a specific application, see previous pages. If the data shown below does not meet your reliability requirements or if the bias conditions are not within your operating limits please contact technical sales for additional information.









## XL1000-BD



Low Noise Amplifier 20 - 40 GHz

Rev. V2

### MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by MACOM manufacturer:

Other Similar products are found below:

A82-1 BGA622H6820XTSA1 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC397-SX HMC405 HMC561-SX HMC8120-SX HMC8121-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SMA3101-TL-E SMA39 A66-1 A66-3 A67-1 LX5535LQ LX5540LL MAAM02350 HMC3653LP3BETR HMC549MS8GETR HMC-ALH435-SX SMA101 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E WPM0510A HMC5929LS6TR HMC5879LS7TR HMC1126 HMC1087F10 HMC1086 HMC1016 SMA1212 MAX2689EWS+T MAAMSS0041TR MAAM37000-A1G LTC6430AIUF-15#PBF CHA5115-QDG SMA70-2 SMA4011 A231 HMC-AUH232 LX5511LQ LX5511LQ-TR HMC7441-SX HMC-ALH310