

MH180 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH180 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Pull-up resistor output. Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

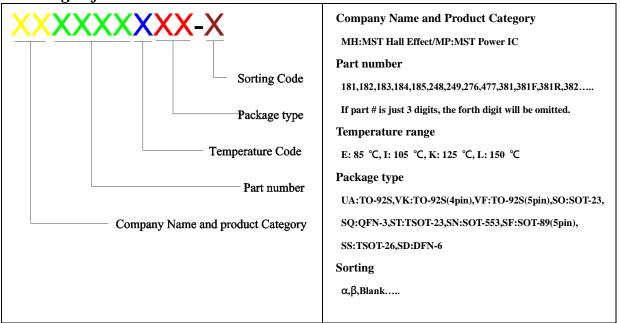
This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH180 is rated for operation between the ambient temperatures –40°C and 85°C for the E temperature range, and –40°C to 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package; Package SF is an SOT89-5L, a low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

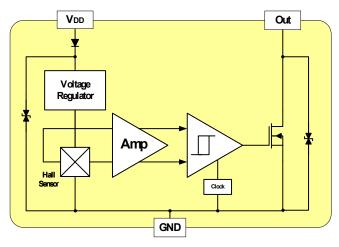
Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free


Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

080519 Page 1 of 5 Rev. 1.01


Ordering Information

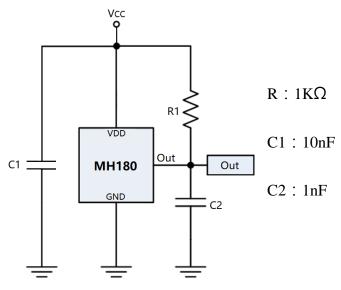
Part No.	Temperature Suffix	Package Type
MH180KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH180KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH180EUA	$E \left(-40^{\circ}C \text{ to} + 85^{\circ}C\right)$	UA (TO-92S)
MH180ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH180KSF	$E (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SF (5-pin SOT-89)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit
Supply voltage, (VDD)			28	V
Output Voltage,(Vout)			28	V
Reverse voltage, (VDD)			-28	V
Magnetic flux density			Unlimited	Gauss
Output current, (Isink)		50	mA	
Operating Temperature Bongs	(T_{α})	"E" version	-40 to +85	°C
Operating Temperature Range	, (1a)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)			150	°C
Thermal Resistance	$(heta_{ja})$	UA / SO/ SF	206 / 543/ 156	°C/W
	$\overline{(heta_{jc})}$	UA / SO/ SF	148 / 410/ 34	°C/W
Package Power Dissipation, (P_D) UA / SO/ SF			606 / 230 / 800	mW


Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

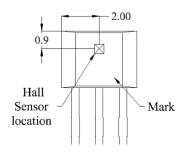
Electrical Specifications

DC Operating Parameters: $T_A=+25$ °C, $V_{DD}=12V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	2.5		24.0	V
Supply Current,(<i>I</i> _{DD})	B <b<sub>OP</b<sub>			5.0	mA
Output Saturation Voltage, (V_{sat})	$I_{OUT} = 20 \text{ mA}, B > B_{OP}$			400.0	mV
Output Leakage Current, (Ioff)	I_{OFF} B <brp, <math="">V_{OUT} = 12V</brp,>			10.0	uA
Internal Oscillator Chopper Frequency,(fosc)			69		kHz
Output Rise Time, (T_R)	RL= 1.1 K Ω , CL = 20 pF		0.04	0.45	uS
Output Fall Time, (T_F)	RL=820Ω; CL =20pF		0.18	0.45	uS
Electro-Static Discharge	HBM	4			KV
Operate Point,(BOP)	UA, SF, SO	10	50	90	Gauss
Release Point,(BRP)	UA, SF, SO	90	-50	-10	Gauss
Hysteresis,(BHYS)			100		Gauss

Typical application circuit

080519 Page 3 of 5 Rev. 1.01

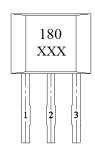


Sensor Location, Package Dimension and Marking

UA Package

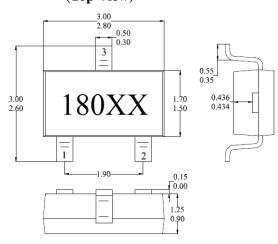
4.10 3.90 180 3.10 0.557 2.90 XXX 0.457 0.42 0.56 0.56 14.5 0.38 0.51 1.27 0.36

Hall Chip location

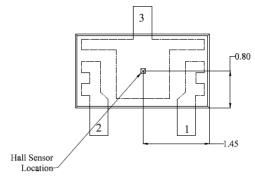

NOTES:

- 1. Controlling dimension: mm
- Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:

Pin 1	V_{DD}
Pin 2	GND
Pin 3	Output

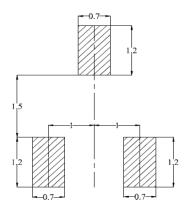

Output Pin Assignment

(Top view)


SO Package

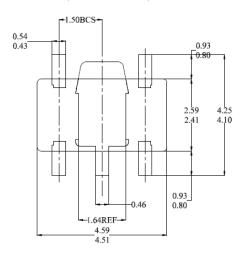
(Top View)

Hall Plate Chip Location


(Bottom view)

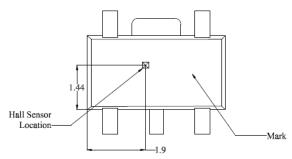
NOTES:

- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum


(For reference only)Land Pattern

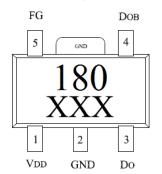
SF Package (SOT-89 5 pins)

(Bottom view)



NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Do not bend leads within 1 mm of lead to package interface.
- 4. PINOUT:


 $\begin{array}{lll} Pin \ 1 & V_{DD} \\ Pin \ 2 & GND \\ Pin \ 3 & Out \\ Pin \ 4 & N/A \\ Pin \ 5 & N/A \end{array}$

Hall Chip location

Output Pin Assignment

(Top view)

080519 Page 5 of 5 Rev. 1.01

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Hall Effect/Magnetic Sensors category:

Click to view products by Magnesensor manufacturer:

Other Similar products are found below:

GT-14114 GT-14123 GTN2C15C GT-12076 GT-14049 GT-14067 GT-14132 GT-18030 PST360G2-1S-C0000-ERA360-05K MZC12V2PS-KP0 PSC360G2-F1P-C0000-ERA360-05K-200 115L 9E 502 W06017 115L 5,2E 502 W06017 115L 14E 502 W06017 103SR14A-1
55100-3H-04-A MZT7-03VPS-KR0 MZT7-03VPS-KW0 MZT8-03VPS-KW0 MZT8-28VPS-KP0 A1326LLHLT-T 55505-00-02-B 551003M-03-A GN 55.2-ND-15-3 GN 55.2-ND-18-3 GN 55.2-ND-4-3 GN 55.2-ND-8-3 GN 55.2-SC-10-3 GN 55.4-ND-12-9,5-2,5 GN 55.4-ND26-20,3-5 GN 55.4-ND-7,5-4-1,5 101MG7-BP 103SR18-1 A1324LUA-T MXM1120KIT MXM1120SOKIT A3212EUA-T AA006-02E
55140-3H-03-A 55100-2M-02-A MM12-60APS-ZUK ACX04-F99-I-V15 GN 55.1-SC-24-11.5-4 MZR40158 55100-2M-01-D PW520000
MZT7-03VPS-KP0 MZT8-03VPS-KR0 RZT7-03ZRS-KP0 RZT7-03ZRS-KW0