

Dual Hall Effect Latch with Speed & Direction Output

1 Product Description

The MT890X family is a Hall-effect dual latch produced by BCD technology with both high performance and high reliability. The Hall IC internally includes an on-chip Hall voltage generator, a voltage regulator for operation with supply voltage of 2.7V to 24V, temperature compensation circuitry, small-signal amplifier, Hall IC with dynamic offset cancellation system, Schmitt trigger and two open drain output, all in a single package.

Two Hall plates are integrated on the same chip, and using the high precision of the wafer fabrication process to ensure a fixed spacing of 1.45mm between the sensing elements. The first Hall plate provide the speed signal output. The combination of both the Hall plate signals is then internally processed to directly deliver a direction signal output.

The MT890X family provides SOT-23-6L for surface mount to customers & flat TO-94 for through-hole mount. All packages are RoHS compliant.

2 Features

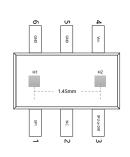
- Two Integrated Hall Plates for Direction Detection
- 2.7~24V Operating V_{DD} Range
- -40°C~150°C Operating Temperature
- Package Option: SOT-23-6L Flat TO-94
- Magnetic Sensitivity Option:
 MT8901 (BOP=25Gs, BRP=-25Gs)
- Speed & Direction Open-Drain Output Dual Speed Open-Drain Output
- Self-diagnosis
- -30V Reversed Power Supply Protection
- Output Over Current Protection
- RoHS Compliant: (EU)2015/863

3 Product Overview of MT890X

Part No.	Description
MT890XAT-SS	SOT-23-6L, tape & reel (3000pcs/bag)
MT890XAT-SD	SOT-23-6L, tape & reel (3000pcs/bag)
MT890XA-SS	Flat TO-94, bulk packaging (1000pcs/bag)
MT890XA-SD	Flat TO-94, bulk packaging (1000pcs/bag)

Note:

SS: SP1 + SP2 SD: SP1 + DIR


4 Applications

- Windows Lifter with Anti-Pinch Feature
- Rotation Speed & Direction Detection
- Linear Speed & Direction Detection

5 Pin Configuration and Functions

SOT-23-6L	No.	Description
SP1	1	Speed Signal Out1
NC	2	Unconnected
SP2 or DIR	3	Speed Signal Out2 or Direction Signal Out
VDD	4	Power Supply
GND	5	Ground
GND	6	Ground

Flat TO-94	No.	Description
V _{DD}	1	Power Supply
SP2 or DIR	2	Speed Signal Out2 or Direction Signal Out
SP1	3	Speed Signal Out1
GND	4	Ground

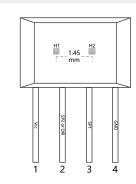


Figure.1

Pin Configuration & Functions SOT-23-6L & Flat TO-94 Top-View

Table of Contents

1	Product Description	T
2	Features	1
3	Product Overview of MT890X	1
4	Applications	1
5	Pin Configuration and Functions	1
6	Functional Block Diagram	3
7	Electrical and Magnetic Characteristics	3
	7.1 Absolute Maximum Ratings	3
	7.2 Electrical Specifications	4
	7.3 ESD Rating	4
	7.4 Magnetic Characteristics	
	7.4.1 MT8901 Series	5
	7.5 Characteristic Performance	5
8	Output Behavior vs. Magnetic Pole (SP1+ SP2 Mode)	6
	8.1 Typical Output Waveform (SP1+ SP2 Mode)	6
9	Output Behavior vs. Magnetic Pole (SP1 + DIR Mode)	7
	9.1 Typical Output Waveform (SP1 + DIR Mode)	7
10	Typical Application Circuit	8
11	Self-diagnosis	9
12	Package Material Information	11
	11.1 SOT-23-6L Package Information	11
	11.2 Flat TO-94 Package Information	12
13	Copy Rights and Disclaimer	13

Reversion History

4	_					•
1	()r	ICI	ına	ΙV	'ers	ion

2 Version 1.1

3 Version 1.2

4 Version 1.3

Update marking spec Update MT890XA Series Update the description of self-diagnosis Add characteristic performance

6 Functional Block Diagram

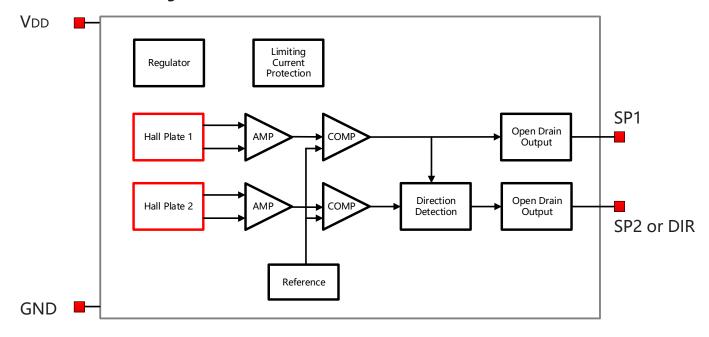


Figure.2

Functional Block Diagram

7 Electrical and Magnetic Characteristics

7.1 Absolute Maximum Ratings

Absolute maximum ratings are limited values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

Symbol	Parameters	Min	Max	Units
VDD	Supply Voltage	-	30	V
VRDD	Reverse Battery Voltage	-30	-	V
Vout	Output Voltage	-0.7	30	V
Іоит	Continuous Output Current	-	40	mA
TA	Operating Ambient Temperature	-40	150	°C
Ts	Storage Temperature	-50	160	°C
TJ	Junction Temperature	-	165	°C
В	Magnetic Flux Density	No	Limit	Gs

7.2 Electrical Specifications

At $T_A=-40\sim150$ °C, $V_{DD}=2.7V\sim24V$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Тур	Max	Unit
VDD	Supply Voltage	Operating	2.7	-	24	V
IDD	Supply Current	Fs=100kHz	-	4.5	7.5	mA
Іоср	Short Circuit Protection Current	B>BOP, VOUT=VDD	-	30	-	mA
Vdson	Output Saturation Voltage	IOUT=10mA, B>BOP	-	-	0.4	V
loff	Output Leakage Current	Vout=24V, B < BRP	-	-	10	uA
Tr & Tr	Output Rise & Fall Time	RL=1KOhm, CL=20pF	-	-	1.0	us
TPO ⁽¹⁾	Power on Time	dVDD/dt>5V/uS B>BOP(MAX)	-	20	30	us
Fs	Sampling Frequency		-	100	-	KHz
TD	Delay Time Refer to Figure.5		-	1.2	-	us
Rтн	Thermal Resistance of SOT-23-6L		-	301	-	°C/W
NIH	Thermal Resistance of Flat TO-94			230		°C/W
	ear resistance of flat 10 51					C,

Notes:

7.3 ESD Ratings

Symbo	ol en	Reference	Values	Unit
Vesd	Human-body model (HBM)	AEC-Q100-002	Class H3	Grade
VESD	Charged-device model (CDM)	AEC-Q100-011	Class C3	Grade

⁽¹⁾ TPO here is defined when self-diagnosis is disabled. If self-diagnosis is enabled, please refer to the $t_{\text{edge}3}$ in Part 11 (Self-diagnosis)

7.4 Magnetic Characteristics

At V_{DD}=2.7V~24V (unless otherwise specified)

7.4.1 MT8901 Series

Parameter	Symbol	Min	Тур	Max	Unit
Operating Point	Bop, Ta =25°C	10	25	40	Gs
Release Point	Brp, Ta =25°C	-40	-25	-10	Gs
Hysteresis Window	Внуѕт, Та =25°С	20	50	80	Gs
Magnetic Matching	BOP1-BOP2 or BRP1-BRP2, TA=25°C	-10		10	Gs
Magnetic Offset	Bop1+Brp1 or Bop2+Brp2, Ta=25°C	-10		10	Gs
Temperature Coefficie	nt		-1000		ppm/°C
Hall Sensor Spacing			1.45		mm

7.5 Characteristic Performance

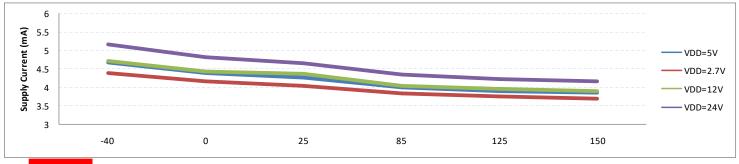


Figure.3 Supply Current vs. Temperature & VDD

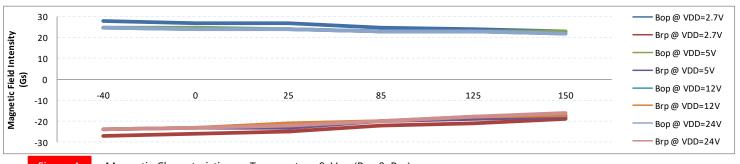
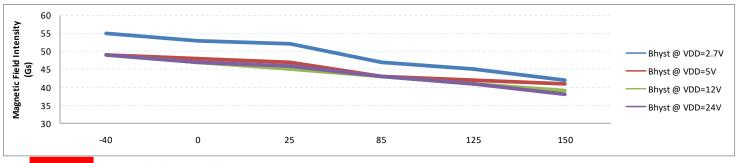
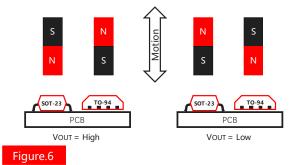
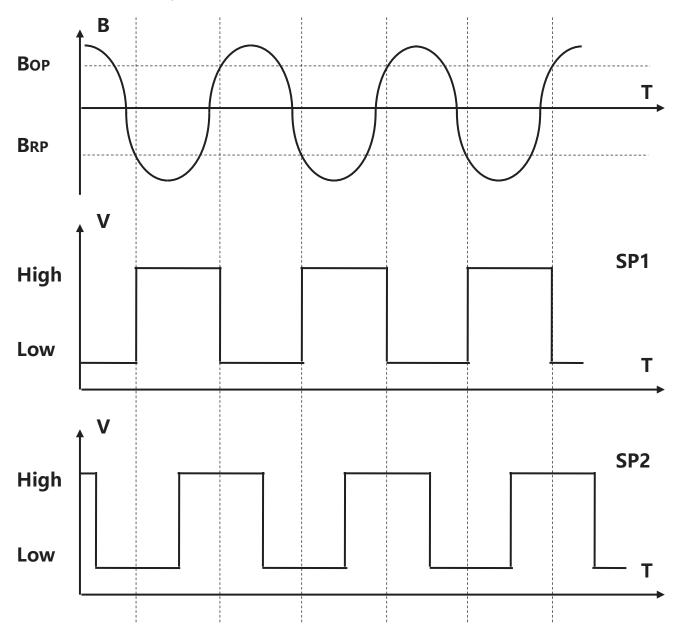


Figure.4 Magnetic Characteristics vs. Temperature & Vdd (Bop & Brp)




Figure.5 Magnetic Characteristics vs. Temperature & VDD (BHYST)

8 Output Behavior vs. Magnetic Pole (SP1 + SP2 Mode)


At T_A=-40~150 °C, V_{DD}=2.7V~24V (unless otherwise specified)

Part No.	Parameter	Test Conditions	SP Output State
SOT-23	South Pole	B>Bop	Low
Series	North Pole	B <b<sub>RP</b<sub>	High
TO-94	North Pole	B>Bop	Low
Series	South Pole	B <b<sub>RP</b<sub>	High

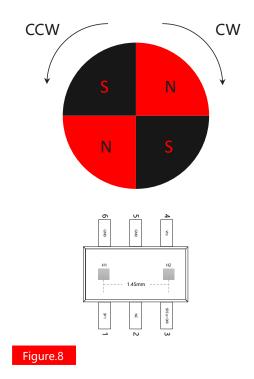
8.1 Typical Output Waveform (SP1 + SP2 Mode)

MT890XAT-SS as example

Note:

The phase error between Speed 1 & Speed 2 depends on the environment of the application

Figure.7


9 Output Behavior vs. Magnetic Pole (SP1 + DIR Mode)

At Ta=-40~150 °C, V_{DD} =2.7V~24V (unless otherwise specified), MT890XAT-SD as example

Parameter	Test Conditions	Н1	H2	SP Output State
CCW	nX	N	S	
	n(X+1)	Ν	N	
	n(X+2)	S	N	Low
	n(X+3)	S	S	
	n(X+4) ≡nX	N	S	

	n(X+4) ≡nX	N	S	
Parameter	Test Conditions	Н1	H2	SP Output State
	nX	N	S	
	n(X+1)	S	S	
CW	n(X+2)	S	N	High
	n(X+3)	N	N	

S

9.1 Typical Output Waveform (SP1 + DIR Mode)

 $n(X+4) \equiv nX$

MT890XAT-SD as example

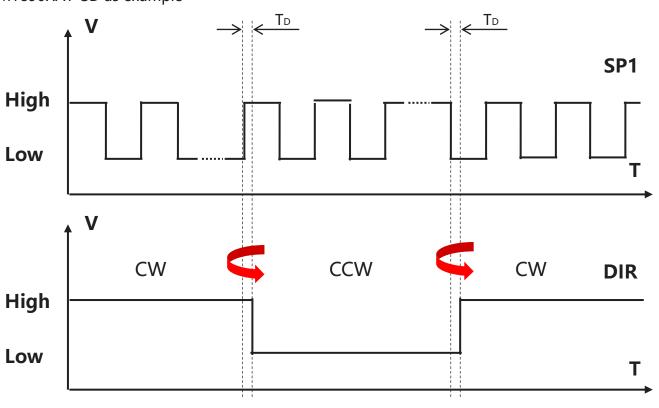


Figure.9

10 Typical Application Circuit

MT890XAT as example

Note: Recommended value for RL1 & RL2 is 5KOhms to 20KOhms

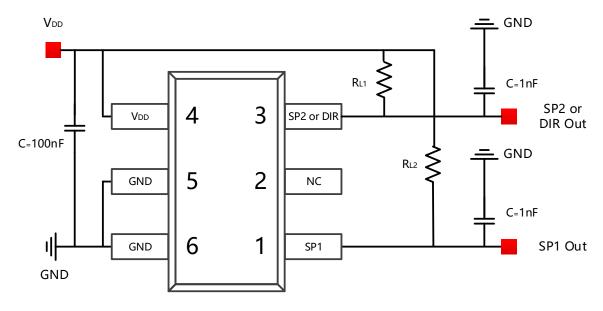


Figure.10 Typical Application Circuit

11 Self-diagnosis

The MT890X family offers self-diagnosis function during the sensor power-on. This allows the user to check the functionality of the whole signal path in response to BOP and BRP, as well as the wire connections of the sensor IC.

In order to activate the self-diagnosis function, user are advised to connect their system as shown in Figure.7, in which a host is required to control the VDD and SP1 port of the sensor. Then user should follow the following two steps:

Firstly the host has to power off the sensor and the host I/O pull the sensor SP1 output (VOUT1) low.

Then the host powers on the sensor, and the host I/O has to release the VOUT1 afterwards. Referring to the self-diagnosis timing diagram in Figure.8, there is a minimum time interval between t_{sup} (the moment when VSUP has reached 90% of its final value) and t_{rls} (the moment when host I/O releases).

If any one of the 2 criteria above is violated, the sensor might skip the self-diagnosis phase and enter the normal operation mode.

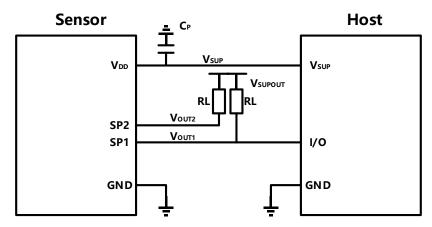
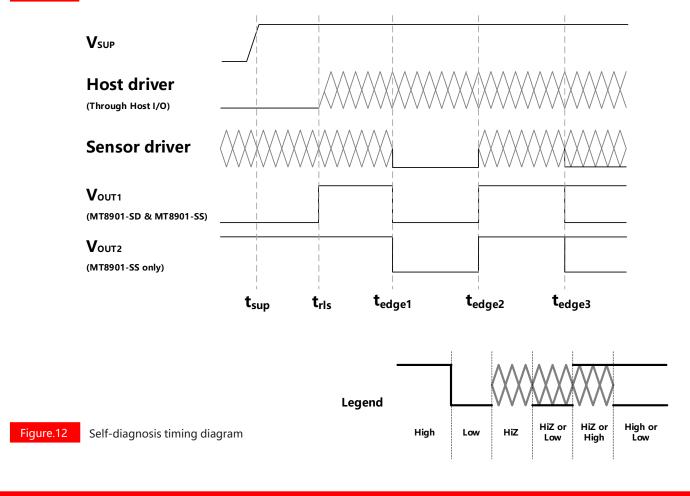



Figure.11

Sensor-Host connection diagram for self-diagnosis function

11 Self-diagnosis (Continued)

For MT8901-SD, the self-diagnosis function is only available for SP1. If the self-diagnosis function is activated, firstly the VOUT1 will be pulled high by RL since host I/O has released. Then the sensor will generate a first dummy signal that drives the SP1 output low, which simulates an BOP. The falling edge (t_{edge1}) of VOUT1 will be captured by the host. Afterwards the sensor generates a second dummy signal of the opposite polarity that drives the SP1 output high (by RL), which simulates an BRP. The rising edge (t_{edge2}) of VOUT1 is also captured by the host. Now the self-diagnosis phase has ended and then the sensor will enter its normal operation mode, sending the first real data to VOUT1 at t_{edge3} .

For MT8901-SS, the self-diagnosis function is available for both SP1 and SP2. The waveform of Vout1 is same as MT8901-SD. Vout2 is initially pulled up by the RL (not controlled by the host). Since t_{edge1} , Vout2 waveform will be the same as Vout1, until t_{edge3} , when the first real data of SP2 is sent to Vout2.

The two captured edges (t_{edge1} and t_{edge2}) should fall in a certain time window, specified in the table "Spec for self-diagnosis". This could be a criterion for host to determine whether or not the self-diagnosis has succeeded.

Spec for self-diagnosis

Symbol	Parameters	Min	Тур	Max	Unit
t _{rls}	Host I/O release time	$t_{sup} + 20^{(1)(2)}$	-	-	us
t _{edge1}	First falling edge of V _{OUT} during self-diagnosis	t _{rls} +5	$t_{rls}+10$	t _{rls} +15	us
t _{edge2}	First rising edge of V _{OUT} during self-diagnosis	t _{edge1} +5	t _{edge1} +10	t _{edge1} +15	us
t _{edge3}	First data available during normal operation	t _{rls} +15	t_{rls} +30	T_{rls} +45	us
B _{detmax}	Maximum external field allowed during self-diagnosis	-	5000	-	Gauss

Notes:

- (1) t_{sup} is the time when sensor V_{DD} has reached 90% of its final value. $V_{DD} = V_{SUP}$.
- (2) Power-on of V_{DD} has to be faster than 5V/us.

12 Package Material Information (For Reference Only – Not for Tooling Use)

12.1 SOT-23-6L Package Information

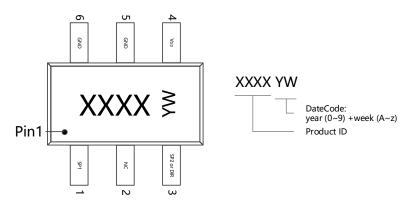


Figure.13 SOT-23-6L Chip Marking Spec

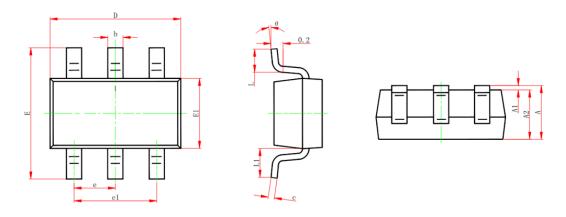


Figure.14 SOT-23-6L Package Drawing

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.950 TYP		0.037 TYP	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600 TYP		0.024 TYP	
θ	0 °	8 °	0 °	8 °

12 Package Material Information (For Reference Only – Not for Tooling Use)

12.2 Flat TO-94 Package Information

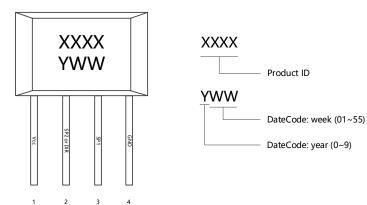
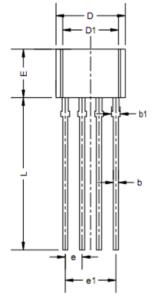



Figure.15

Flat TO-94 Chip Marking Spec

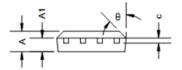


Figure.16 Flat TO-94 Package Drawing

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
А	1.400	1.800	0.055	0.071
A1	0.700	0.900	0.028	0.035
b	0.360	0.500	0.014	0.020
b1	0.380	0.550	0.015	0.022
С	0.360	0.510	0.014	0.020
D	4.980	5.280	0.196	0.208
D1	3.780	4.080	0.149	0.161
E	3.450	3.750	0.136	0.148
е	1.270 TYP		0.050 TYP	
e1	3.710	3.910	0.146	0.154
L	14.900	15.300	0.587	0.602
θ 45 °		45 °		

13 Copy Rights and Disclaimer

- 1. This document may not be reproduced or duplicated, in any form, in whole or in part without prior written consent of MagnTek . Copyrights © 2020, MagnTek Incorporated.
- 2. MagnTek reserves the right to make changes to the information published in this document at anytime without notice.
- 3. MagnTek' s products are limited for use in normal commercial applications. MagnTek' s products are not to be used in any device or system, including but not limited to medical life support equipment and system.

For the latest version of this document, please visit our website: www.magntek.com.cn

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Hall Effect/Magnetic Sensors category:

Click to view products by MagnTek manufacturer:

Other Similar products are found below:

HGPRDT005A AH277AZ4-AG1 AV-10379 AV-10448 SS41C AH1894-Z-7 TLE4917 50017859-003 TY-13101 TLE4976L SS85CA
BU52002GUL-E2 BU52003GUL-E2 AH277AZ4-BG1 TLE49614MXTSA1 AH211Z4-AG1 AH3360-FT4-7 TLE4941-1 SS460S100SAMPLE 50065820-03 AH374-P-A AH3372-P-B AH1806-P-A TLE49595UFXHALA1 SS460P-T2 AH1913-W-7 AH3373-P-B
TLE9852QXXUMA1 TLE5046ICAKLRHALA1 AH1903-FA-EVM AH49FNTR-EVM AH8502-FDC-EVM AH3774-P-EVM
TLE4998S3XALA1 TLE5011FUMA1 TLE5027CE6747HAMA1 TLE5109A16E1210XUMA1 TLI4966GHTSA1 TLI4906KHTSA1
MA710GQ-P S-57K1NBL2A-M3T2U S-57P1NBL9S-M3T4U S-576ZNL2B-L3T2U S-576ZNL2B-A6T8U S-57P1NBL0S-M3T4U S-57A1NSL1A-M3T2U S-57K1RBL1A-M3T2U S-57P1NBH9S-M3T4U S-57P1NBH0S-M3T4U S-57A1NSH1A-M3T2U