

## SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS **PRODUCT SPECIFICATION**

規格書

**CUSTOMER :** 

(客戶):志盛翔

DATE :

(日期):2020-09-09


| CATEGORY (品名)    | : ALUMINUM ELECTROLYTIC CAPACITORS |
|------------------|------------------------------------|
| DESCRIPTION (型号) | : GF $16V1500\mu F(\phi 10x20)$    |
| VERSION (版本)     | : 01                               |
| Customer P/N     | :                                  |
| SUPPLIER         | :                                  |

| SUPPLI           | ER              | CU               | JSTOMER           |
|------------------|-----------------|------------------|-------------------|
| PREPARED<br>(拟定) | CHECKED<br>(审核) | APPROVAL<br>(批准) | SIGNATURE<br>(签名) |
| 邓文文              | 付婷婷             |                  |                   |

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

|         | S                                                            | SPECIFIC |     |     |  | ALTERN   | ATION HIS<br>RECORDS | TORY      |
|---------|--------------------------------------------------------------|----------|-----|-----|--|----------|----------------------|-----------|
| Rev.    | GF SERIES       Date     Mark     Page     Contents     Purp |          |     |     |  | Purpose  | Drafter              | Approver  |
| 1000    | Duit                                                         | Interne  |     | uge |  | T urpose | Diator               | rippiover |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
|         |                                                              |          |     |     |  |          |                      |           |
| <b></b> |                                                              | I        | 0.1 |     |  |          |                      |           |
|         | Version                                                      |          | 01  |     |  |          | Page 1               |           |

# ELECTROLYTICMAN YUE ELECTRONICSCOMPANY LIMITEDGF SERIES



### Table 1:

| N<br>o. | SAMXON<br>Part No. | WV<br>(Vdc) | Cap.<br>(µF) | Cap<br>tolerance | Temp.<br>range(℃) | tan <b>δ</b><br>(120Hz,<br>20℃) | Leakage<br>Current<br>(µA,2min) | Max Ripple<br>Current at 105°C<br>100kHz<br>(mA rms) | Impedance<br>at 20°C<br>100kHz<br>(Ωmax) |
|---------|--------------------|-------------|--------------|------------------|-------------------|---------------------------------|---------------------------------|------------------------------------------------------|------------------------------------------|
| 1       | EGF158M1CG20RR**P  | 16          | 1500         | -20%~+20%        | -40~105           | 0.16                            | 240                             | 1400                                                 | 0.046                                    |

| Vers | ion | 01 | Page | 2 |
|------|-----|----|------|---|

| C O N T E N T S                                                                     |       |
|-------------------------------------------------------------------------------------|-------|
|                                                                                     | Sheet |
| Application                                                                         | 4     |
| Part Number System                                                                  | 4     |
| Construction                                                                        | 5     |
| Characteristics                                                                     | 5~10  |
| 1 Rated voltage & Surge voltage                                                     |       |
| 2 Capacitance (Tolerance)                                                           |       |
| 3 Leakage current                                                                   |       |
| $4 \tan \delta$                                                                     |       |
| .5 Terminal strength                                                                |       |
| 6 Temperature characteristic                                                        |       |
| 7 Load life test                                                                    |       |
| .8 Shelf life test                                                                  |       |
| .9 Surge test                                                                       |       |
| .10 Vibration                                                                       |       |
| .11 Solderability test                                                              |       |
| .12 Resistance to solder heat                                                       |       |
| .13 Change of temperature                                                           |       |
| .14 Damp heat test                                                                  |       |
| 15 Vent test                                                                        |       |
| 16 Maximum permissible (ripple current)                                             |       |
| List of "Environment-related Substances to be Controlled ('Controlled Substances')" | d 11  |
| Attachment: Application Guidelines                                                  | 12~15 |

|  | Version | 01 |  | Page | 3 |
|--|---------|----|--|------|---|
|--|---------|----|--|------|---|

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES



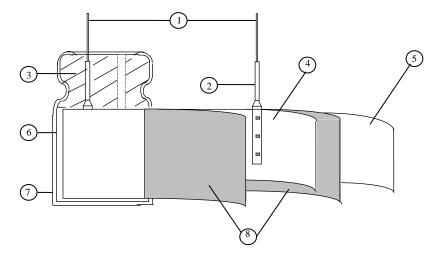
### 1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

#### 2. Part Number System 123 456 7 89 101112 1314 1516 17 Ρ EGS 1 0 5 м 1 H **D**1 1 TC S А SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE SERIES CAPACITANCE CASE SIZE TOI TYPE Feature Code Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size SAMXON Product Lin ries ESM EKF ESS EKS 0D (d) Co 3 B 3.5 1 4 C 5 D 6.3 E For internal use only RR Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 0G 4 we have H.A.B.C.D. Ammo Taping 0.22 224 EGS 6.3 OJ EGS EKM EKG EOM EZS EGF ESF ±10 к E,M or 0,1,2,3,4,5,9) 8 0K 2.0mm Pitch τт 0.33 334 10 1A L 13 13.5 13.5 14 4.5 c 12 ±15 12.5 1B J V τυ 2.5mm Pitch 0.47 474 16 1C м +20 20 1D 3.5mm Pitch тν ESF EGT EGK EGE EGD EGC 105 Sleeve Material 1 Code 16.5 16.5 25 1E Р PET 5.0mm Pitch тс 30 11 2.2 225 Ν ±30 18.5 32 13 ERS ERF ERL ERR 35 1V Lead Cut & Form 3.3 335 -40 w ⋚ 40 1G 25 30 34 35 40 СВ-Туре СВ 42 1M 4.7 475 -20 0 ERT ERE ERD ERH EBD А 50 1H СЕ-Туре CE 10 106 57 1L -20 +10 63 **1**J С <u>42</u> 45 HE HE-Type 22 226 71 15 40 51 63.5 76 80 90 100 ERA ERB ERC EFA -20 +40 75 1**T** x KD-Type KD 33 336 80 1K 85 1R -20 +50 FD-Type FD s 476 ENH ERW ERY ELP EAP 47 90 19 Code 45 54 57 77 72 112 118 12 18 12 25 20 20 30 34 35 35 100 2A 4.5 -10 EH-Type EH в 100 107 120 20 5.4 125 2B PCB Termial $\begin{array}{r} 7\\ \hline 7.7\\ \hline 10.2\\ \hline 11\\ \hline 11.5\\ \hline 12\\ \hline 2.5\\ \hline 13\\ \hline \\ 13\\ \hline \end{array}$ -10 +20 227 220 EQP EDP v 150 2Z 160 2C sw ETP EHP EUP 337 330 -10 +30 180 2P Q 2D 200 Snap-in sx EKP EEP EFP ESP EVP 470 477 -10 +50 215 22 т 220 2N 13.5 sz 2200 228 -5 +10 230 23 20 25 29.5 Е 250 2E Lug SG 22000 229 275 2Т 30 31.5 35 35.5 -5 +15 F 300 21 05 35.5 50 80 100 105 110 120 30 40 33000 339 310 2R -5 +20 G 50 80 1L 1M 1N 1P 06 2F 315 EWS EWH EWL EWB VSS 47000 479 2U 330 0 +20 R 350 Т5 2V 10T 100000 Screw 2X 0 +30 360 0 т6 VNS 375 2Q 150000 15T 10 1R 1E 2Y 40 50 VKS VKM VRL VNH 385 +50 Т D5 400 2G 220000 22T 15 1F 1T +5 +15 z 420 2M D6 450 2W VRF 330000 33T +5 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 630 2J 1500000 15M +10 +30 н 2200000 22M 3300000 33M 5

Version 01

Page


4

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

### SAMXON

### 3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.



| No | Component        | Material                                     |
|----|------------------|----------------------------------------------|
| 1  | Lead line        | Tinned CP wire (Pb Free)                     |
| 2  | Terminal         | Aluminum wire                                |
| 3  | Sealing Material | Rubber                                       |
| 4  | Al-Foil (+)      | Formed aluminum foil                         |
| 5  | Al-Foil (-)      | Etched aluminum foil or formed aluminum foil |
| 6  | Case             | Aluminum case                                |
| 7  | Sleeve           | PET                                          |
| 8  | Separator        | Electrolyte paper                            |

### 4. Characteristics

### Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

| Ambient temperature | :15°C to 35°C     |
|---------------------|-------------------|
| Relative humidity   | : 45% to 85%      |
| Air Pressure        | : 86kPa to 106kPa |

If there is any doubt about the results, measurement shall be made within the following conditions:

| Ambient temperature | $: 20^{\circ}C \pm 2^{\circ}C$ |
|---------------------|--------------------------------|
| Relative humidity   | : 60% to 70%                   |
| Air Pressure        | : 86kPa to 106kPa              |

### Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

| Varian     | 01 |  | 5 |
|------------|----|--|---|
| version    | 01 |  | 3 |
| V CI SIOII | 01 |  | 5 |

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES



| Tabl | ITEM                                  |                                                                                                               |                                                                                                                                                                                                                                 |                                                   | PERFO                                               | RMANC                                 | CE                       |                                   |                   |            |
|------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------|-------------------|------------|
|      | Rated<br>voltage<br>(WV)              |                                                                                                               |                                                                                                                                                                                                                                 |                                                   |                                                     |                                       |                          |                                   |                   |            |
| 4.1  |                                       | WV (V.DC)                                                                                                     | 6.3                                                                                                                                                                                                                             | 10                                                | 16                                                  | 25                                    | 35                       | 50                                | 63                | 100        |
|      | Surge<br>voltage (SV)                 | SV (V.DC)                                                                                                     | 8                                                                                                                                                                                                                               | 13                                                | 20                                                  | 32                                    | 44                       | 63                                | 79                | 125        |
| 4.2  | Nominal<br>capacitance<br>(Tolerance) | Measuring F<br>Measuring V<br>Measuring T<br><criteria></criteria>                                            | $<$ Condition>Measuring Frequency: 120Hz±12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$ $<$ Criteria>Shall be within the specified capacitance tolerance.                                |                                                   |                                                     |                                       |                          |                                   |                   |            |
| 4.3  | Leakage<br>current                    | Connecting t<br>minutes, and<br><b><criteria></criteria></b>                                                  | <pre><condition> Connecting the capacitor with a protective resistor <math>(1k\Omega \pm 10\Omega)</math> in series for 2 minutes, and then, measure Leakage Current. </condition></pre> <criteria> Refer to Table 1</criteria> |                                                   |                                                     |                                       |                          |                                   |                   |            |
| 4.4  | tanδ                                  | See 4.2, Nor<br>< <b>Criteria</b> >                                                                           | <condition><br/>See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria>Refer to Table 1</criteria></condition>                                                                                   |                                                   |                                                     |                                       |                          |                                   |                   |            |
|      |                                       | Condition:<br>Tensile Str<br>Fixed the or<br>seconds.<br>Bending St<br>Fixed the or<br>90° within<br>seconds. | ength of<br>capacitor<br>rength of<br>apacitor,                                                                                                                                                                                 | r, applied<br>f Termina<br>applied f<br>onds, and | force to<br>als.<br>Force to b<br>then ben<br>Tense | ent the te<br>t it for 9<br>ile force | rminal (1<br>0° to its o | l~4 mm b<br>original p<br>Bending | from the position | rubber) fo |
| 4.5  | Terminal strength                     |                                                                                                               | nm and                                                                                                                                                                                                                          |                                                   |                                                     | (kgf)<br>5 (0.51)                     |                          | (kg<br>2.5 (                      | gf)<br>0.25)      |            |
|      |                                       |                                                                                                               | 5mm to                                                                                                                                                                                                                          |                                                   |                                                     | 0 (1.0)                               |                          |                                   | 0.51)             |            |
|      |                                       | < <b>Criteri</b><br>No notic                                                                                  |                                                                                                                                                                                                                                 | anges sh                                          | all be fou                                          | ınd, no b                             | reakage                  | or looser                         | ness at the       | e terminal |

| Version 01 Page 6 | Page 6 |
|-------------------|--------|
|-------------------|--------|

Г

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

|     |                               | <conditi< th=""><th></th><th>T</th><th>(°C)</th><th></th><th></th><th><b>T</b>'</th><th></th><th></th></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | T                                                                                                      | (°C)                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              | <b>T</b> '                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          | ing Tempe                                                                                              |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | · 1                                                                                                                                                                                                                                                                          | Time                                                                                                                                                 | .1.1 .                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                        | $\frac{20\pm 2}{10(25)}$                                                                               |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | to reach                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                        | -40(-25)                                                                                               |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | to reach                                                                                                                                                                                                                                                                     |                                                                                                                                                      | *                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                        | 20±2                                                                                                   |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | to reach                                                                                                                                                                                                                                                                     |                                                                                                                                                      | -                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                        | 105±                                                                                                   |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | to reach                                                                                                                                                                                                                                                                     |                                                                                                                                                      | *                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                        | 20±2                                                                                                   | 2                                                                                                                                                                                                                      | Time                                                                                                                                                                                                             | to reach                                                                                                                                                                                                                                                                     | thermal of                                                                                                                                           | equilibri                                                                                                                             | um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                               | <criteria< td=""><td></td><td>• 41 1•</td><td></td><td>4 4751 1</td><td>1</td><td></td><td>1</td><td>1 11 /</td></criteria<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | • 41 1•                                                                                                |                                                                                                                                                                                                                        | 4 4751 1                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                            |                                                                                                                                                      | 1                                                                                                                                     | 1 11 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | shall be with                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                                                                                                                        | 4.41he l                                                                                                                                                                                                         | eakage ci                                                                                                                                                                                                                                                                    | irrent me                                                                                                                                            | easured s                                                                                                                             | shall not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Temperature                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n 8 times of<br>p 5, tanδ sh                                                                                                                                                                                                                             | -                                                                                                      |                                                                                                                                                                                                                        | nit of Iter                                                                                                                                                                                                      | n 1 1The                                                                                                                                                                                                                                                                     | laakaga                                                                                                                                              | current                                                                                                                               | shall not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | characteristi                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n the specifi                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                                                                                                                        | III OI IIEI                                                                                                                                                                                                      | 11 4.41110                                                                                                                                                                                                                                                                   | Теакаде                                                                                                                                              | current                                                                                                                               | shan not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.6 | cs                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °C (-25°C), i                                                                                                                                                                                                                                            |                                                                                                        | (z) ratio                                                                                                                                                                                                              | shall not                                                                                                                                                                                                        | exceed th                                                                                                                                                                                                                                                                    | e value o                                                                                                                                            | of the fo                                                                                                                             | llowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                               | table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 ( 20 0 ), 1                                                                                                                                                                                                                                            | mpedance                                                                                               | (L) Iulio I                                                                                                                                                                                                            | inun not                                                                                                                                                                                                         | eneccea ti                                                                                                                                                                                                                                                                   | ie varae v                                                                                                                                           | 01 110 10                                                                                                                             | iio wing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voltage (V)                                                                                                                                                                                                                                              | 6.3                                                                                                    | 10                                                                                                                                                                                                                     | 16                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                           | 35                                                                                                                                                   | 50                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z+20°C                                                                                                                                                                                                                                                   | 4                                                                                                      | 3                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                            | 2                                                                                                                                                    | 2                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                               | Z-40℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z+20°C                                                                                                                                                                                                                                                   | 8                                                                                                      | 6                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                            | 3                                                                                                                                                    | 3                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |                                                                                                        | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voltage (V)                                                                                                                                                                                                                                              | 100                                                                                                    | -                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /Z+20℃                                                                                                                                                                                                                                                   | 2                                                                                                      | -                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /Z+20℃                                                                                                                                                                                                                                                   | 3                                                                                                      |                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               | For capac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | citance value                                                                                                                                                                                                                                            | $> 1000 \mu$                                                                                           | F. Add 0.                                                                                                                                                                                                              | 5 per and                                                                                                                                                                                                        | ther 1000                                                                                                                                                                                                                                                                    | ) I F for                                                                                                                                            | Z-25/Z+                                                                                                                               | -20°C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          | •                                                                                                      |                                                                                                                                                                                                                        | -                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                              | -                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                        |                                                                                                        | Add 1.0                                                                                                                                                                                                                | ) per ano                                                                                                                                                                                                        | ther 1000                                                                                                                                                                                                                                                                    | F for                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               | Capacitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ce, tanð, an                                                                                                                                                                                                                                             | d impeda                                                                                               | Add 1.0                                                                                                                                                                                                                | ) per ano                                                                                                                                                                                                        | ther 1000                                                                                                                                                                                                                                                                    | F for                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               | Capacitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | d impedar                                                                                              | Add 1.0                                                                                                                                                                                                                | ) per ano                                                                                                                                                                                                        | ther 1000                                                                                                                                                                                                                                                                    | F for                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                               | <conditi< td=""><td></td><td>-</td><td>Add 1.0</td><td>) per ano<br/>e measur</td><td>ther 1000<br/>red at 120</td><td>µ F for 2<br/>Hz.</td><td>Z-40°C/2</td><td>Z+20℃.</td></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          | -                                                                                                      | Add 1.0                                                                                                                                                                                                                | ) per ano<br>e measur                                                                                                                                                                                            | ther 1000<br>red at 120                                                                                                                                                                                                                                                      | µ F for 2<br>Hz.                                                                                                                                     | Z-40°C/2                                                                                                                              | Z+20℃.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                               | <conditi<br>Accordin</conditi<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion>                                                                                                                                                                                                                                                     | 84-4No.4.                                                                                              | Add 1.0<br>nce shall b<br>13 methoo                                                                                                                                                                                    | ) per ano<br>e measur                                                                                                                                                                                            | ther 1000<br>red at 120<br>apacitor is                                                                                                                                                                                                                                       | )Hz.                                                                                                                                                 | Z-40°C/Z                                                                                                                              | Z+20°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                               | <b>Conditi</b><br>Accordin<br>$105 \ \C \pm$<br>DC and $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion><br>g to IEC603<br>2 with DC b<br>ripple peak                                                                                                                                                                                                        | 84-4No.4.<br>ias voltage<br>voltage sl                                                                 | Add 1.0<br>nce shall b<br>13 method<br>e plus the mall not estimated                                                                                                                                                   | ) per ano<br>e measur<br>ls, The ca<br>rated ripp<br>kceed the                                                                                                                                                   | ther 1000<br>red at 120<br>pacitor is<br>le curren<br>e rated w                                                                                                                                                                                                              | by F for 2<br>DHz.<br>S stored a<br>t for Taby<br>vorking v                                                                                          | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                               | <b>Conditi</b><br>Accordin<br>$105 \ \ \ \pm$<br>DC and a<br>product si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test                                                                                                                                                                                       | 84-4No.4.<br>ias voltage<br>voltage sl<br>red after 10                                                 | Add 1.0<br>nce shall b<br>13 method<br>e plus the r<br>nall not e:<br>5 hours red                                                                                                                                      | ) per ano<br>e measur<br>ls, The ca<br>rated ripp<br>kceed the                                                                                                                                                   | ther 1000<br>red at 120<br>pacitor is<br>le curren<br>e rated w                                                                                                                                                                                                              | by F for 2<br>DHz.<br>S stored a<br>t for Taby<br>vorking v                                                                                          | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Load                          | <b>Conditi</b><br>Accordin<br>$105 \ \ \pm \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>puld meet the                                                                                                                                                                       | 84-4No.4.<br>ias voltage<br>voltage sl<br>red after 10                                                 | Add 1.0<br>nce shall b<br>13 method<br>e plus the r<br>nall not e:<br>5 hours red                                                                                                                                      | ) per ano<br>e measur<br>ls, The ca<br>rated ripp<br>kceed the                                                                                                                                                   | ther 1000<br>red at 120<br>pacitor is<br>le curren<br>e rated w                                                                                                                                                                                                              | by F for 2<br>DHz.<br>S stored a<br>t for Taby<br>vorking v                                                                                          | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 | life                          | <conditi< th="">Accordin<math>105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</math></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>puld meet the<br><b>a</b> >                                                                                                                                                                | 84-4No.4.<br>ias voltage<br>voltage sl<br>ed after 10<br>e following                                   | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not e:<br>5 hours red<br>g table:                                                                                                                          | b per ano<br>e measur<br>ls, The ca<br>rated ripp<br>acceed the<br>covering                                                                                                                                      | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at                                                                                                                                                                                               | by F for 2<br>DHz.<br>S stored a<br>t for Taby<br>vorking v                                                                                          | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 |                               | $<$ ConditiAccordin $105 \ C \pm$ DC and product siresult show $<$ CriteriaThe char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha                                                                                                                                              | 84-4No.4.<br>ias voltage<br>voltage sl<br>red after 10<br>following<br>all meet th                     | Add 1.0<br>nce shall b<br>13 method<br>e plus the r<br>nall not ex<br>6 hours red<br>g table:<br>e followin                                                                                                            | b per ano<br>e measur<br>ls, The ca<br>rated ripp<br>acceed the<br>covering<br>g require                                                                                                                         | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.                                                                                                                                                                                    | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>vorking v<br>mospher                                                                                 | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 | life                          | $<$ ConditiAccordin $105 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren                                                                                                                             | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ed after 10<br>c following<br>all meet th<br>nt           | Add 1.0<br>nce shall b<br>13 method<br>e plus the n<br>nall not e:<br>5 hours red<br>g table:<br><u>e followin</u><br>Value in                                                                                         | b per ano<br>e measur<br>ls, The ca<br>rated ripp<br>cceed the<br>covering<br><u>g require</u><br>4.3 shall                                                                                                      | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisf                                                                                                                                                                       | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>rorking v<br>mospher                                                                                 | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)                                                                                        | Z+20°C.<br>erature of<br>he sum of<br>Then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 | life                          | $<$ ConditiAccordin $105 \ C \pm$ DC and aproduct siresult shot $<$ CriteriaThe charLeCa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>vakage curren<br>upacitance C                                                                                                                     | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ed after 10<br>c following<br>all meet th<br>nt           | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within                                                                                      | b per ano<br>e measure<br>rated ripp<br>acceed the<br>covering<br>g require<br>4.3 shall<br>z 25% of                                                                                                             | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisf                                                                                                                                                                       | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>vorking v<br>mospher<br>ied                                                                          | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit                                                                           | Z+20°C.<br>erature of<br>he sum of<br>Then the<br>tions. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.7 | life                          | <conditi< th="">Accordin<math>105 \ C \pm</math>DC and product siresult shot<criteria< td="">The chartLeLatar</criteria<></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>acteristic sha<br>eakage curren<br>apacitance C<br>no                                                                                                                     | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ed after 10<br>c following<br>all meet th<br>nt           | Add 1.0<br>nce shall b<br>13 method<br>e plus the f<br>nall not e<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =                                                                                     | b per ano<br>e measure<br>as, The car<br>ated ripp<br>acceed the<br>covering<br><u>g require</u><br><u>4.3 shall</u><br><u>25% of</u><br><u>e than 15</u>                                                        | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisf<br>initial va<br>0% of the                                                                                                                                            | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>gorking v<br>mospher<br>ied<br>alue.<br>e specifie                                                   | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit                                                                           | Z+20°C.<br>erature of<br>he sum of<br>Then the<br>tions. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.7 | life                          | <conditi< th="">Accordin<math>105 \ C \pm</math>DC and product siresult shot<criteria< td="">The chartLeLatar</criteria<></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>vakage curren<br>upacitance C                                                                                                                     | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ed after 10<br>c following<br>all meet th<br>nt           | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within                                                                                      | b per ano<br>e measure<br>as, The car<br>ated ripp<br>acceed the<br>covering<br><u>g require</u><br><u>4.3 shall</u><br><u>25% of</u><br><u>e than 15</u>                                                        | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisf<br>initial va<br>0% of the                                                                                                                                            | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>gorking v<br>mospher<br>ied<br>alue.<br>e specifie                                                   | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit                                                                           | Z+20°C.<br>erature of<br>he sum of<br>Then the<br>tions. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.7 | life                          | $<$ ConditiAccordin $105 \ C \pm$ DC and aproduct siresult shot $<$ CriteriaThe charLeCatarAg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>build meet the<br>a><br>acteristic sha<br>cakage curren<br>upacitance C<br>no<br>opearance                                                                                                 | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ed after 10<br>c following<br>all meet th<br>nt           | Add 1.0<br>nce shall b<br>13 method<br>e plus the f<br>nall not e<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =                                                                                     | b per ano<br>e measure<br>as, The car<br>ated ripp<br>acceed the<br>covering<br><u>g require</u><br><u>4.3 shall</u><br><u>25% of</u><br><u>e than 15</u>                                                        | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisf<br>initial va<br>0% of the                                                                                                                                            | μ F for 2<br>DHz.<br>s stored a<br>t for Tab<br>gorking v<br>mospher<br>ied<br>alue.<br>e specifie                                                   | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit                                                                           | Z+20°C.<br>erature of<br>he sum of<br>Then the<br>tions. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.7 | life                          | $<$ Conditi<br>Accordin<br>$105 \ C \pm$<br>DC and a<br>product si<br>result show<br>$<$ Criteria<br>The char<br>Le<br>Ca<br>tar<br>Approximation<br>Ca<br>tar $<$ Conditi<br>$<$ Conditi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren<br>pacitance C<br>no<br>opearance                                                                                           | 84-4No.4.<br>ias voltage<br>voltage sl<br>red after 10<br>e following<br>all meet th<br>hange          | Add 1.0<br>nce shall b<br>13 method<br>e plus the r<br>nall not e<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh                                                             | b per ano<br>e measur<br>ls, The ca<br>rated ripp<br>acceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>than 15</u><br>all be no                                                     | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisfi<br>initial va<br>leakage o                                                                                                                                           | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>yorking v<br>mospher<br>ied<br>alue.<br>specifie<br>of electro                                        | Z-40°C/Z<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.                                                    | Z+20°C.<br>erature of<br>he sum of<br>Then the<br>tions. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.7 | life                          | $<$ Conditi<br>Accordin<br>$105 \ C \pm$<br>DC and product si<br>result show<br>$<$ Criteria<br>The chart<br>Le<br>Ca<br>tar<br>Ar $<$ Conditi<br>The capaciti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>acteristic sha<br>catage curren<br>pacitance C<br>ion><br>ion>                                                                                                    | 84-4No.4.<br>ias voltage sl<br>red after 10<br>following<br>all meet th<br>hange                       | Add 1.0<br>nce shall b<br>13 method<br>e plus the n<br>nall not e:<br>5 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta                                             | b per ano<br>e measure<br>as, The car<br>ated ripp<br>acceed the<br>covering<br><u>g require</u><br><u>4.3 shall</u><br><u>25% of</u><br><u>all be no</u><br>age applie                                          | ther 1000<br>red at 120<br>apacitor is<br>le curren<br>e rated w<br>time at at<br>ements.<br>be satisfi<br>initial va<br>0% of the<br>leakage of<br>ed at a te                                                                                                               | μ F for 2<br>http://www.stored.ac.<br>s stored a<br>t for Tab<br>yorking w<br>mospher<br>ied<br>alue.<br>specifie<br>of electroc<br>mperatur         | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105                                       | $z+20^{\circ}C$ .<br>erature of<br>he sum of<br>Then the<br>tions. The<br>$\pm 2^{\circ}C$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7 | life                          | <conditi< th=""><math>Accordin<math>105 \ C \pm</math><math>DC</math> and <math>ric<math>product siresult show<criteria< td="">The chartLeCatarAr<conditi< td="">The capaci<math>1000+48</math>/</conditi<></criteria<></math></math></math></conditi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>acteristic sha<br>eakage curren<br>apacitance C<br>nδ<br>opearance<br>ion><br>itors are ther<br>0 hours. Fol                                                      | 84-4No.4.<br>ias voltage<br>voltage sl<br>ed after 10<br>e following<br>all meet th<br>hange           | Add 1.0<br>nce shall b<br>13 method<br>e plus the mall not e:<br>5 hours rea<br>g table:<br><u>e followin</u><br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta<br>is period t                            | b per ano<br>e measur<br>ls, The ca<br>rated ripp<br>acceed the<br>covering<br><u>g require</u><br><u>4.3 shall</u><br><u>25% of</u><br><u>e than 15</u><br>all be no                                            | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br>ments.<br>be satisfi<br>initial va<br>0% of the<br>leakage o<br>ed at a te<br>itors shal                                                                                                  | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>rorking v<br>mospher<br>ied<br>alue.<br>specific<br>of electro<br>mperatur<br>l be remo               | Z-40°C/Z<br>at a temp<br>ole 1. (T<br>voltage)<br>ic condit<br>ed value.<br>olyte.<br>re of 105<br>oved from                          | $2+20^{\circ}C.$<br>erature of<br>he sum of<br>Then the<br>tions. The<br>$\pm 2^{\circ}C$ fo<br>m the tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.7 | life                          | $<$ Conditi<br>Accordin $105 \ C \pm$ DC and aproduct siresult show $<$ CriteriaThe charLeCatarApproximation $<$ ConditionThe capacit $1000+48$ /chamber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>acteristic sha<br>catage curren<br>pacitance C<br>ion><br>ion>                                                                                                    | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ved after 10<br>e following<br>all meet th<br>nt<br>hange | Add 1.0<br>nce shall b<br>13 method<br>e plus the mall not end<br>of hours red<br>g table:<br><u>e followin</u><br>Value in<br>Within =<br><u>Not more</u><br>There sh<br>th no volta<br>is period t                   | b per ano<br>e measur<br>rated ripp<br>cceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>e than 15</u><br><u>all be no</u><br>age applic<br>he capac<br>room ter                     | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br><u>be satisfi</u><br>initial va<br><u>0% of the</u><br>leakage of<br>ed at a te<br>itors shal<br>appendure                                                                                | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>corking v<br>mospher<br>ied<br>alue.<br>specifie<br>of electro<br>mperatur<br>l be remo               | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105<br>oved from<br>hours. 1              | $\pm 2^{\circ}C$ for<br>m the tess<br>mean of the sum of the sum of the sum of the the sum of the the second se |
| 4.7 | life<br>test                  | $<$ Conditi<br>Accordin $105 \ C \pm$<br>DC and a<br>product si<br>result show $<$ Criteria<br>The charLe<br>Ca<br>ta<br>taCa<br>ta<br>taThe char<br>Ca<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>taConditi<br>The capaci<br>1000+48/<br>chamber<br>shall be c<br>applied for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren<br>pacitance C<br>nδ<br>opearance<br>ion><br>itors are ther<br>0 hours. Fol<br>and be allow<br>connected to<br>or 30min. Af | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ved after 10<br>e following<br>all meet th<br>hange       | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta<br>is period t<br>bilized at<br>limiting re | b per ano<br>e measur<br>e measur<br>sated ripp<br>acceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>e than 15</u><br>all be no<br>age applic<br>he capac<br>room ter<br>esistor(11 | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br>ments.<br>be satisficient<br>be satisficient<br>be satisficient<br>be satisficient<br>antial va<br>0% of the<br>leakage of<br>ed at a te<br>itors shal<br>apperature<br>$x \pm 100\Omega$ | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>yorking w<br>mospher<br>ied<br>alue.<br>specifie<br>of electron<br>l be remain<br>for 4~8<br>) with Γ | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105<br>oved from<br>hours. 1<br>D.C. rate | $\pm 2^{\circ}C$ for<br>m the tes<br>Next they<br>d voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | life<br>test<br>Shelf         | $<$ Conditi<br>Accordin<br>$105 \ C \pm$<br>DC and a<br>product si<br>result show<br>$<$ Criteria<br>The chart<br>Le<br>Ca<br>tar<br>Approximation<br>Criteria<br>The chart<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>tar<br>Approximation<br>Ca<br>tar<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>Approximation<br>Ca<br>tar<br>tar<br>Approximation<br>Ca<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>tar<br>t | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren<br>pacitance C<br>nδ<br>opearance<br>ion><br>itors are ther<br>0 hours. Fol<br>and be allow<br>connected to<br>or 30min. Af | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ved after 10<br>e following<br>all meet th<br>hange       | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta<br>is period t<br>bilized at<br>limiting re | b per ano<br>e measur<br>e measur<br>sated ripp<br>acceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>e than 15</u><br>all be no<br>age applic<br>he capac<br>room ter<br>esistor(11 | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br>ments.<br>be satisficient<br>be satisficient<br>be satisficient<br>be satisficient<br>antial va<br>0% of the<br>leakage of<br>ed at a te<br>itors shal<br>apperature<br>$x \pm 100\Omega$ | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>yorking w<br>mospher<br>ied<br>alue.<br>specifie<br>of electron<br>l be remain<br>for 4~8<br>) with Γ | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105<br>oved from<br>hours. 1<br>D.C. rate | $\pm 2^{\circ}C$ for<br>m the tes<br>Next they<br>d voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | life<br>test<br>Shelf<br>life | $<$ Conditi<br>Accordin $105 \ C \pm$<br>DC and a<br>product si<br>result show $<$ Criteria<br>The charLe<br>Ca<br>ta<br>taCa<br>ta<br>taThe charLe<br>Ca<br>ta<br>taCa<br>ta<br>ta<br>taThe charLe<br>Ca<br>ta<br>taCa<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>taCa<br>ta<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<                                                                                                                                                                                                                                                                                    | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren<br>pacitance C<br>nδ<br>opearance<br>ion><br>itors are ther<br>0 hours. Fol<br>and be allow<br>connected to<br>or 30min. Af | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ved after 10<br>e following<br>all meet th<br>hange       | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta<br>is period t<br>bilized at<br>limiting re | b per ano<br>e measur<br>e measur<br>sated ripp<br>acceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>e than 15</u><br>all be no<br>age applic<br>he capac<br>room ter<br>esistor(11 | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br>ments.<br>be satisficient<br>be satisficient<br>be satisficient<br>be satisficient<br>antial va<br>0% of the<br>leakage of<br>ed at a te<br>itors shal<br>apperature<br>$x \pm 100\Omega$ | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>yorking w<br>mospher<br>ied<br>alue.<br>specifie<br>of electron<br>l be remain<br>for 4~8<br>) with Γ | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105<br>oved from<br>hours. 1<br>D.C. rate | $\pm 2^{\circ}C$ for<br>m the tes<br>Next they<br>d voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | life<br>test<br>Shelf<br>life | $<$ Conditi<br>Accordin $105 \ C \pm$<br>DC and a<br>product si<br>result show $<$ Criteria<br>The charLe<br>Ca<br>ta<br>taCa<br>ta<br>taThe charLe<br>Ca<br>ta<br>taCa<br>ta<br>ta<br>taThe charLe<br>Ca<br>ta<br>taCa<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>taCa<br>ta<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>taLe<br>Ca<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<br>ta<                                                                                                                                                                                                                                                                                    | ion><br>g to IEC603<br>2 with DC b<br>ripple peak<br>hould be test<br>ould meet the<br>a><br>acteristic sha<br>eakage curren<br>pacitance C<br>nδ<br>opearance<br>ion><br>itors are ther<br>0 hours. Fol<br>and be allow<br>connected to<br>or 30min. Af | 84-4No.4.<br>ias voltage sl<br>voltage sl<br>ved after 10<br>e following<br>all meet th<br>hange       | Add 1.0<br>nce shall b<br>13 method<br>e plus the p<br>nall not ex<br>6 hours red<br>g table:<br>e followin<br>Value in<br>Within =<br>Not more<br>There sh<br>th no volta<br>is period t<br>bilized at<br>limiting re | b per ano<br>e measur<br>e measur<br>sated ripp<br>acceed the<br>covering<br><u>g require</u><br>4.3 shall<br><u>25% of</u><br><u>e than 15</u><br>all be no<br>age applic<br>he capac<br>room ter<br>esistor(11 | ther 1000<br>red at 120<br>apacitor is<br>ale curren<br>e rated w<br>time at at<br>ments.<br>be satisficient<br>be satisficient<br>be satisficient<br>be satisficient<br>antial va<br>0% of the<br>leakage of<br>ed at a te<br>itors shal<br>apperature<br>$x \pm 100\Omega$ | μ F for 2<br>Hz.<br>s stored a<br>t for Tab<br>yorking w<br>mospher<br>ied<br>alue.<br>specifie<br>of electron<br>l be remain<br>for 4~8<br>) with Γ | Z-40°C/2<br>at a temp<br>ble 1. (T<br>voltage)<br>ic condit<br>ed value.<br>blyte.<br>re of 105<br>oved from<br>hours. 1<br>D.C. rate | $\pm 2^{\circ}C$ for<br>m the tes<br>Next they<br>d voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|           |                   | <criteria></criteria>                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                             |
|-----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                   | The characteristic shall meet                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             |
|           | Shelf             | Leakage current                                                                                                                                                                                                                                                                        | Value in 4.3 shall be satisfied                                                                                                                                                                                                             |
| 4.8       | life              | Capacitance Change                                                                                                                                                                                                                                                                     | Within $\pm 25\%$ of initial value.                                                                                                                                                                                                         |
| <b></b> 0 | test              | tanδ                                                                                                                                                                                                                                                                                   | Not more than 150% of the specified value.                                                                                                                                                                                                  |
|           |                   | Appearance                                                                                                                                                                                                                                                                             | There shall be no leakage of electrolyte.                                                                                                                                                                                                   |
|           |                   |                                                                                                                                                                                                                                                                                        | stored more than 1 year, the leakage current may                                                                                                                                                                                            |
|           |                   |                                                                                                                                                                                                                                                                                        | e through about 1 k $\Omega$ resistor, if necessary.                                                                                                                                                                                        |
| 4.9       | Surge<br>test     | The capacitor shall be submit<br>followed discharge of 5 min<br>The test temperature shall b<br>$C_R$ :Nominal Capacitance ( $\mu$<br><b><criteria></criteria></b><br>Leakage current<br>Capacitance Change<br>tan $\delta$<br>Appearance<br>Attention:                                | e 15~35°C.<br>I F)<br>Not more than the specified value.<br>Within ±15% of initial value.<br>Not more than the specified value.<br>There shall be no leakage of electrolyte.<br>ge at abnormal situation only. It is not applicable to such |
| 4.10      | Vibration<br>test | perpendicular directions.<br>Vibration frequency ra<br>Peak to peak amplitude<br>Sweep rate<br>Mounting method:<br>The capacitor with diameter g<br>in place with a bracket.<br>4mm or less<br><b>4</b> mm or less<br><b>2</b><br><b>Criteria</b> ><br>After the test, the following i | e : 1.5mm<br>: 10Hz ~ 55Hz ~ 10Hz in about 1 minute<br>greater than 12.5mm or longer than 25mm must be fixed<br>Within 30°                                                                                                                  |

| Version | 01 |  | 8 |
|---------|----|--|---|

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

### SAMXON

|      |                           | <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                        |                            |              |
|------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------------------|--------------|
|      |                           | The capacitor shall be test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ted under tl         |                        | conditions:                |              |
|      |                           | Soldering temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | : 245±3°C              |                            |              |
|      | C - 1 - 1 - 1 - 1 - 1 - 1 | Dipping depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | : 2mm                  |                            |              |
| 4.11 | Solderability             | Dipping speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | : 25±2.5mm             | /s                         |              |
|      | test                      | Dipping time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | : 3±0.5s               |                            |              |
|      |                           | <criteria></criteria>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                        | 6050/ 6/1 6                | 1 • 1        |
|      |                           | Coating quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | immersed               | n of 95% of the surface    | being        |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | minerseu               |                            |              |
|      |                           | <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                        |                            |              |
|      |                           | Terminals of the capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r shall be i         | mmersed into           | ) solder bath at 260 $\pm$ | 5℃for10±     |
|      |                           | 1 seconds or $400\pm10^\circ { m C}$ fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $r3^{+1}_{-0}$ secon | ds to 1.5~2.01         | mm from the body of c      | apacitor .   |
|      |                           | Then the capacitor shall b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                        |                            |              |
|      | Resistance to             | for $1 \sim 2$ hours before measured by the second se |                      |                        | emperature and norma       |              |
| 4.12 | solder heat               | <criteria></criteria>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                        |                            |              |
|      | test                      | Leakage current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                   | t more than th         | ne specified value.        |              |
|      |                           | Capacitance Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wi                   | thin $\pm 10\%$ o      | f initial value.           |              |
|      |                           | tanδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                   | t more than th         | ne specified value.        |              |
|      |                           | Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Th                   | ere shall be no        | o leakage of electrolyte   |              |
|      |                           | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                        | yy                         |              |
|      |                           | <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                        |                            |              |
|      |                           | Temperature Cycle:Accor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                    |                        | -                          | shall be     |
|      |                           | placed in an oven, the cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | ording as belo         |                            |              |
|      |                           | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | emperature           |                        | Time                       |              |
|      |                           | (1)+20℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                        | $\leq 3$ Minutes           |              |
|      | Change of                 | (2)Rated low tempera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ature (-40°          | C) (-25℃)              | $30\pm 2$ Minutes          |              |
| 4.13 | temperature               | (3)Rated high temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rature (+10          | 5℃)                    | $30\pm 2$ Minutes          |              |
|      | test                      | (1) to (3)=1 cycle, tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | ,                      |                            |              |
|      |                           | <criteria></criteria>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                        |                            |              |
|      |                           | The characteristic shall m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eet the foll         | owing require          | ement                      |              |
|      |                           | Leakage current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        | pecified value.            |              |
|      |                           | tanδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                        | pecified value.            |              |
|      |                           | Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                        | akage of electrolyte.      |              |
|      |                           | <condition></condition>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                        |                            |              |
|      |                           | Humidity Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                        |                            |              |
|      |                           | According to IEC60384-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4No.4.12 m           | ethods, capac          | itor shall be exposed f    | or $500\pm8$ |
|      |                           | hours in an atmosphere of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f 90~95%R            | H .at $40\pm2^{\circ}$ | C, the characteristic ch   | ange shall   |
|      |                           | meet the following require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                        |                            |              |
|      |                           | <criteria></criteria>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                    |                        |                            |              |
| 4.14 | Damp heat                 | Leakage current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | than the spec          |                            |              |
| 4.14 | test                      | Capacitance Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Within ±             | 20% of initiation      | al value.                  |              |
|      |                           | tanδ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not more             | than 120% of           | f the specified value.     |              |
|      |                           | Appearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | There sha            | ll be no leaka         | ge of electrolyte.         |              |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |                            |              |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |                            |              |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |                            |              |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |                            |              |
|      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                        |                            |              |

| Version | 01 |  | Pa |
|---------|----|--|----|
|---------|----|--|----|

Page 9

### ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES



| 4.15 | Vent<br>test                                  | <criteria><br/>The vent shall operate with no<br/>pieces of the capacitor and/or c</criteria>                                                                                                                                                                                                            | th its polar<br>ble is appli<br>rent (A)<br>L<br>0<br>dangerous | ity reversed<br>ied.         | to a DC po  | ower source | e. Then a |
|------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|-------------|-------------|-----------|
| 4.16 | Maximum<br>permissible<br>(ripple<br>current) | <condition><br/>The maximum permissible rip<br/>at 120Hz and can be applied<br/>Table-1<br/>The combined value of D.C v<br/>rated voltage and shall not re<br/>Frequency Multipliers:<br/>Coefficient Freq.<br/>(Hz)<br/>Cap. (μ F)<br/>~180<br/>220~560<br/>680~1800<br/>2200~3900<br/>4700</condition> | at maximu<br>voltage and                                        | im operating<br>I the peak A | g temperatu | re          | cceed the |
|      |                                               |                                                                                                                                                                                                                                                                                                          |                                                                 |                              |             |             |           |

| Version 01 Page 10 | Version | 01 |  |  | 10 |
|--------------------|---------|----|--|--|----|
|--------------------|---------|----|--|--|----|



# 5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

|                       | Substances                                     |  |  |  |  |
|-----------------------|------------------------------------------------|--|--|--|--|
|                       | Cadmium and cadmium compounds                  |  |  |  |  |
| Heavy metals          | Lead and lead compounds                        |  |  |  |  |
| ficavy metals         | Mercury and mercury compounds                  |  |  |  |  |
|                       | Hexavalent chromium compounds                  |  |  |  |  |
|                       | Polychlorinated biphenyls (PCB)                |  |  |  |  |
| Chloinated            | Polychlorinated naphthalenes (PCN)             |  |  |  |  |
| organic               | Polychlorinated terphenyls (PCT)               |  |  |  |  |
| compounds             | Short-chain chlorinated paraffins(SCCP)        |  |  |  |  |
|                       | Other chlorinated organic compounds            |  |  |  |  |
|                       | Polybrominated biphenyls (PBB)                 |  |  |  |  |
| Brominated<br>organic | Polybrominated diphenylethers(PBDE) (including |  |  |  |  |
|                       | decabromodiphenyl ether[DecaBDE])              |  |  |  |  |
| compounds             | Other brominated organic compounds             |  |  |  |  |
| Tributyltin comp      | oounds(TBT)                                    |  |  |  |  |
| Triphenyltin con      | apounds(TPT)                                   |  |  |  |  |
| Asbestos              |                                                |  |  |  |  |
| Specific azo con      | apounds                                        |  |  |  |  |
| Formaldehyde          |                                                |  |  |  |  |
| Beryllium oxide       |                                                |  |  |  |  |
| Beryllium copp        | er                                             |  |  |  |  |
| Specific phthalat     | tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)         |  |  |  |  |
| Hydrofluorocarb       | on (HFC), Perfluorocarbon (PFC)                |  |  |  |  |
| Perfluorooctane       | sulfonates (PFOS)                              |  |  |  |  |
| Specific Benzotr      | iazole                                         |  |  |  |  |

| Version | 01 |  | Page | 11 |
|---------|----|--|------|----|
|---------|----|--|------|----|

### SAMXON

#### **Attachment: Application Guidelines**

#### **1.Circuit Design**

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
   a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
  - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
  - a) At higher frequencies capacitance and impedance decrease while tand increases.
  - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

#### (1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

| Version | 01 |  | Page | 12 |
|---------|----|--|------|----|
|---------|----|--|------|----|



| GF SERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |  |  |  |
| <ul> <li>(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting  Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.  Tighten the terminal and mounting bracket screws within the torque range specified in the specification.</li></ul> |   |  |  |  |  |  |  |  |
| 1.6 Electrical Isolation of the Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |  |  |  |  |  |  |
| <ul><li>Completely isolate the capacitor as follows.</li><li>(1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths</li><li>(2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.</li></ul>                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |  |  |  |
| 1.7 The Product endurance should take the sample as the standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |  |  |  |  |  |  |  |
| 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |  |  |  |
| <ul> <li>1.9 Capacitor Sleeve<br/>The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.<br/>The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                | • |  |  |  |  |  |  |  |
| CAUTION!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |  |  |  |
| <ul> <li>Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.</li> <li>(1) Provide protection circuits and protection devices to allow safe failure modes.</li> <li>(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.</li> </ul>                                                                                                                                                                                                                                                                   | 1 |  |  |  |  |  |  |  |
| 2. Capacitor Handling Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |  |  |  |  |
| 2.1 Considerations Before Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |  |  |  |
| <ol> <li>Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.</li> <li>Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                       | 1 |  |  |  |  |  |  |  |
| (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |  |  |  |  |  |
| <ul> <li>(4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.</li> <li>(5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               | 1 |  |  |  |  |  |  |  |
| <ul><li>2.2 Capacitor Insertion</li><li>(1) Verify the correct capacitance and rated voltage of the capacitor.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |  |  |  |  |
| (2) Verify the correct polarity of the capacitor before inserting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |  |  |  |  |  |  |
| <ul><li>(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.</li><li>(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |  |  |  |  |
| For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |  |  |  |  |  |  |
| 2.3 Manual Soldering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |  |  |  |  |
| <ul><li>(1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.</li><li>(2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |  |  |  |
| (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |  |  |  |
| (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |  |  |  |

- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

| Version | 01 |  | Page | 13 |
|---------|----|--|------|----|
|---------|----|--|------|----|



2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
  - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

#### 3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

#### 4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

#### 5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a  $1000\Omega$ , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

|  | Version | 01 |  | Page | 14 |
|--|---------|----|--|------|----|
|--|---------|----|--|------|----|



The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

#### 6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

| Version | 01 |  | Page | 15 |
|---------|----|--|------|----|
|---------|----|--|------|----|

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminum Electrolytic Capacitors - Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 MAL203125221E3 MAL204216159E3 ESMG101ETD100MF11S RBC-25V-10UF-4X7 RE3-35V222MJ6# RFO-100V471MJ7P# B41041A2687M8 B41041A7226M8 B41044A7157M6 EKRG250ELL100MD07D EKXG201EC3101ML20S EKXG351ETD6R8MJ16S EKZM160ETD471MHB5D EPA-201ELL151MM25S NCD681K10KVY5PF NRLF103M25V35X20F KM4700/16 KME50VB100M-8X11.5 RXJ222M1EBK-1625 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B MAL211929479E3 40D506F050DF5A TE1202E 36DA273F050BB2A KME25VB100M-6.3X11 511D336M250EK5D 511D337M035CG4D 515D477M035CG8PE3 052687X EKMA500ELL4R7ME07D EKRG100ETC221MF09D NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N MAL214099813E3 MAL211990518E3 MAL204281229E3 NEV680M35EF 686KXM050M ERS1VM222L300T EGW2GM150W160T EGS2GM6R8G120C EHS2GM220W200T ERF1VM222L300T ERF1KM151G200T EKZE500ELL101MHB5D EKKM251VSN221MP25S RGA221M1HBK-1016G