

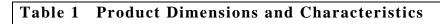
Customer P/N

SUPPLIER

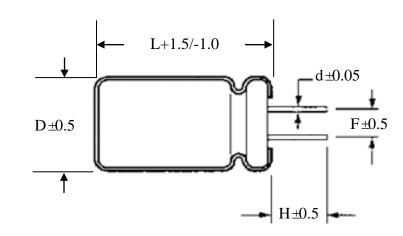
:

:

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書


CUSTOMER: (客戶): 志盛	DATE: 经翔 (日期):2020-4-2
CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GF 16V680μF(φ8X16)
VERSION (版本)	: 01

SUPPLI	ER	CUST	OMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
赵安平	刘渭清		


ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SPECIFICATION GF SERIES						ALTERNATION HISTORY RECORDS				
Rev.	Date	Mark		age	Contents	Purpose	Drafter	Approver		
	2 400					1 01 0 000	2101001	1100101		
	Version		01				Page 1			

MAN YUE ELECTRONICS	ELECTROLYTIC CAPACITOR	SAMXON
COMPANY LIMITED	SPECIFICATION GF SERIES	

Unit: mm

Shape Code	D	8
Shape Code	L	16
	F	3.5
CB Type	Н	3.5
	d	0.5

No.	SAMXON	WV	Cap.	Cap	Temp.	tan ð (120Hz,	Leakage Current	Max Ripple Current at 105℃	Impedance at 20℃	Load lifetime		ension (mm)		Sleeve
110.	Part No.	(Vdc)	(µF)	tolerance	range(℃)	20°C)	(µA,2min)	100kHz (mA rms)	100kHz (Ωmax)	(Hrs)	D×L	F	фd	510010
1	EGF687M1CF16CB**P1	16	680	-20%~+20%	-40~105	0.16	108.8	840	0.087	3000	8X16	3.5	0.5	PET

|--|

	C O N T E N T S	Sheet
1.	Application	4
2.	Part Number System	4
3.	Construction	5
4.	Characteristics	5~10
4.1	Rated voltage & Surge voltage	5 10
4.2	Capacitance (Tolerance)	
4.3	Leakage current	
4.4	tanδ	
4.5	Terminal strength	
4.6	Temperature characteristic	
4.7	Load life test	
4.8	Shelf life test	
4.9	Surge test	
4.1	0 Vibration	
4.1	1 Solderability test	
4.1	2 Resistance to solder heat	
4.1	3 Change of temperature	
	4 Damp heat test	
	Vent test	
	Maximum permissible (ripple current)	
	List of "Environment-related Substances to be Controlled ('Controlled ubstances')"	11
A	Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

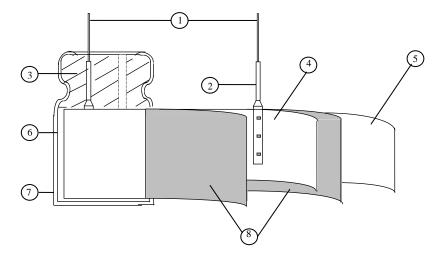
1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System 123 456 7 89 101112 1314 1516 17 Ρ EGS 1 0 5 м 1 H **D**1 1 TC S А SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE SERIES CAPACITANCE CASE SIZE TOI TYPE Feature Code Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size SAMXON Product Lin ries ESM EKF ESS EKS 0D (d) Co 3 B 3.5 1 4 C 5 D 6.3 E For internal use only RR Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 0G 4 we have H.A.B.C.D. Ammo Taping 0.22 224 EGS 6.3 OJ EGS EKM EKG EOM EZS EGF ESF ±10 к E,M or 0,1,2,3,4,5,9) 8 0K 2.0mm Pitch τт 0.33 334 10 1A L 13 13.5 13.5 14 4.5 ¢ 12 ±15 12.5 1B J V τυ 2.5mm Pitch 0.47 474 16 1C м EGF EGK EGE EGD EGC +20 20 1D 3.5mm Pitch тν 105 Sleeve Material 1 Code 16.5 16.5 25 1E Р PET 5.0mm Pitch тс 30 11 2.2 225 Ν ±30 18.5 8 M N 32 13 ERS ERF ERL ERR 35 1V Lead Cut & Form 3.3 335 -40 w ⋚ 40 1G 225 30 34 35 40 СВ-Туре СВ 42 1M 4.7 475 -20 0 ERT ERE ERD ERH EBD А 50 1H СЕ-Туре CE 10 106 57 1L -20 +10 63 **1**J С <u>42</u> 45 HE HE-Type 22 226 71 15 40 51 63.5 76 80 90 100 ERA ERB ERC EFA -20 +40 75 1**T** х KD-Type KD 33 336 80 1K 85 1R -20 +50 FD-Type FD s 476 ENH ERW ERY ELP EAP 47 90 19 Code 45 54 57 77 72 112 118 12 18 12 25 20 20 30 34 35 35 100 2A 4.5 -10 EH-Type EH в 100 107 120 20 5.4 125 2B PCB Termial $\begin{array}{r} 7\\ \hline 7.7\\ \hline 10.2\\ \hline 11\\ \hline 11.5\\ \hline 12\\ \hline 2.5\\ \hline 13\\ \hline \\ 13\\ \hline \end{array}$ -10 +20 227 220 EQP EDP v 150 2Z 160 2C sw ETP EHP EUP 337 330 -10 +30 180 2P Q 2D 200 Snap-in sx EKP EEP EFP ESP EVP 470 477 -10 +50 215 22 т 220 2N 13.5 sz 2200 228 -5 +10 230 23 20 25 29.5 Е 250 2E Lug SG 22000 229 275 2Т 30 31.5 35 35.5 -5 +15 F 300 21 05 35.5 50 80 100 105 110 120 30 40 33000 339 310 2R -5 +20 G 50 80 1L 1M 1N 1P 06 2F 315 EWS EWH EWL EWB VSS 47000 479 2U 330 0 +20 R 350 Т5 2V 10T 100000 Screw 2X 0 +30 360 0 т6 VNS 375 2Q 150000 15T VKS VKM VRL VNH 10 1R 1E 40 50 2Y 385 +50 Т D5 400 2G 220000 22T 15 1F 1T +5 +15 z 420 2M D6 450 2W VRF 330000 33T +5 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 630 2J 1500000 15M +10 +30 н 2200000 22M 3300000 33M 5

Version 01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

Tabl	e 2									
	ITEM				PERFO	RMANC	СЕ			
	Rated voltage (WV)									
4.1		WV (V.DC)	6.3	10	16	25	35	50	63	100
	Surge voltage (SV)	SV (V.DC)	8	13	20	32	44	63	79	125
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requency oltage 'emperat	: N ure : 20	0 Hz \pm 12 ot more t $0 \pm 2^{\circ}$ C apacitanc	han 0.5V				
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capao then, me		-		istor (1	$k\Omega \pm 10$	DΩ) in se	eries for 2
4.4	tanδ	<condition> See 4.2, Nor <criteria> Refer to Tabl</criteria></condition>	m Capac	itance, fo	or measur	ing frequ	iency, vo	ltage and	d tempera	iture.
4.5	Terminal strength	0.51 Over 0. <criteri< td=""><td>ength of capacitor rength of apacitor, $2 \sim 3$ seco er of lea <u>nm and l</u> 5mm to a></td><td>r, applied f Termina applied f onds, and d wire less 0.8mm</td><td>force to als. Force to be then ben Tensi</td><td>ent the te t it for 9 le force (kgf) (0.51) (0.1.0)</td><td>rminal (1 0° to its o N</td><td>I~4 mm f original j Bending (kg 2.5 (0 5 (0</td><td>from the position v force N gf) 0.25) .51)</td><td>rubber) for</td></criteri<>	ength of capacitor rength of apacitor, $2 \sim 3$ seco er of lea <u>nm and l</u> 5mm to a >	r, applied f Termina applied f onds, and d wire less 0.8mm	force to als. Force to be then ben Tensi	ent the te t it for 9 le force (kgf) (0.51) (0.1.0)	rminal (1 0° to its o N	I~4 mm f original j Bending (kg 2.5 (0 5 (0	from the position v force N gf) 0.25) .51)	rubber) for

Version	01		Page	6
---------	----	--	------	---

Г

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<condi< th=""><th></th><th>· · •</th><th>(°C)</th><th></th><th></th><th>T'</th><th></th><th></th></condi<>		· · •	(°C)			T '		
		2		esting Tempe		T .	· 1	Time	.1.1 .	
			1	20 ± 2			Time to reach thermal equilibrium Time to reach thermal equilibrium			
			2	-40(-25)					*	
			3	20±			to reach		-	
			4	105±			to reach		-	
			5	20±	2	Time	to reach	thermal of	equilibri	um
		<criter< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></criter<>								
				within the lin		4.4The l	eakage ci	irrent me	easured s	shall not
	Temperature			of its specifi		t of Itor	n 4 4Tha	1	annaat	ahall mat
	characteristi		-	shall be wit	min the min	it of iter	n 4.41 ne	leakage	current	snan not
4.6	cs		-	C), impedance	(z) ratio s	hall not	exceed th	e value d	of the fo	llowing
		table.	+0 C (-25 C	, impedance	(Z) 1410 S	nan not				nowing
			g Voltage (V) 6.3	10	16	25	35	50	63
			°C/Z+20°C	4	3	2	2	2	2	2
		_	°C/Z+20°C	8	6	4	3	3	3	3
		2.10		Ű		•	3	5	5	3
			g Voltage (V	V) 100						
			°C/Z+20°C	2						
		Z-40°	°C/Z+20°C	3						
		For capa	acitance va	1	T A 110	-	thar 1000	L E for	7 25/7	20°C
		1	achance va	$uue > 1000\mu$		-		-		
		-			Add 1.0	per ano	ther 1000	μ F for 2		
		-		, and impeda	Add 1.0	per ano	ther 1000	μ F for 2		
		-	ance, tanδ,		Add 1.0	per ano	ther 1000	μ F for 2		
		Capacita	ance, tanδ,		Add 1.0 nce shall b	per ano e measur	ther 1000 red at 120	µ F for 2 Hz.	Z-40°C/2	Z+20℃.
		Capacita < Condi Accordi	ance, tanδ, ition> ing to IEC6	, and impeda	Add 1.0 nce shall b	e measur s, The ca	ther 1000 red at 120 apacitor is)Hz.	Z-40°C/Z	Z+20°C.
		Capacita Condi Accordi 105 °C = DC and	ance, tanδ, ition> ing to IEC6 ±2 with D0 d ripple pea	, and impedat 50384-4No.4. C bias voltage ak voltage sl	Add 1.0 nce shall b 13 method e plus the r hall not ex	s, The ca ated ripp	ther 1000 red at 120 apacitor is le curren e rated w	F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
		Capacita Condi Accordi 105 °C = DC and product	ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be t	, and impedat 50384-4No.4. C bias voltag ak voltage sl tested after 10	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec	s, The ca ated ripp	ther 1000 red at 120 apacitor is le curren e rated w	F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
	Load	Capacita <condi Accordi 105 °C = DC and product result sh</condi 	ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thought	, and impedat 50384-4No.4. C bias voltage ak voltage sl	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec	s, The ca ated ripp	ther 1000 red at 120 apacitor is le curren e rated w	F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
4.7	life	Capacita <condi Accordi 105 °C = DC and product result sh <criter< td=""><td>ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria></td><td>, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following</td><td>Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table:</td><td>s, The ca ated ripp cceed the overing</td><td>ther 1000 red at 120 apacitor is le curren e rated w time at at</td><td>F for 2 Hz. s stored a t for Tab</td><td>Z-40°C/Z at a temp ble 1. (T voltage)</td><td>Z+20℃. erature of he sum of Then the</td></criter<></condi 	ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria>	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table:	s, The ca ated ripp cceed the overing	ther 1000 red at 120 apacitor is le curren e rated w time at at	F for 2 Hz. s stored a t for Tab	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
4.7		Capacita <condi Accordi 105 °C = DC and product result sh <criten The cha</criten </condi 	ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria> aracteristic	, and impedat 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin	s, The ca ated ripp ceed the overing	ther 1000 ed at 120 apacitor is le curren e rated w time at at	μ F for 2 DHz. s stored a t for Tab vorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
4.7	life	Capacita <Condi Accordi $105 \degree C$ = DC and product result sh <Criter The cha	ance, $tan\delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be the hould meet ria> aracteristic Leakage cum	, and impedan 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th rrent	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall	ther 1000 ed at 120 apacitor is le curren e rated w time at at ements. be satisf	μ F for 2 DHz. s stored a t for Tab rorking v mospher	Z-40°C/Z at a temp ble 1. (T voltage)	Z+20℃. erature of he sum of Then the
4.7	life	Capacita <Condi Accordi $105 \ C$ = DC and product result sh <Criter The cha	ance, $tan\delta$, ition > ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria > aracteristic Leakage cun Capacitance	, and impedan 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th rrent	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ±	s, The ca ated ripp ceed the overing g require 4.3 shall 25% of	apacitor is pacitor is le curren e rated w time at at ements. be satisf	μ F for 2 DHz. s stored a t for Tab yorking v mospher ied	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	Capacita <Condi Accordi $105 \degree C$ = DC and product result sh <Criter The cha I C t	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria> aracteristic Leakage cun Capacitance ano	, and impedat 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within ± Not more	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall <u>25% of</u> than 15	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	Capacita <Condi Accordi $105 \degree C$ = DC and product result sh <Criter The cha I C t	ance, $tan\delta$, ition > ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria > aracteristic Leakage cun Capacitance	, and impedat 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ±	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall <u>25% of</u> than 15	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	Capacita <Condi Accordi $105 \ C$ = DC and product result sh <Criter The cha I C t A	ance, $tan\delta$, ition > ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria > aracteristic Leakage cum Capacitance tan δ Appearance	, and impedat 50384-4No.4. C bias voltag ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r nall not ex 5 hours rec g table: e followin Value in Within ± Not more	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall <u>25% of</u> than 15	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the	μ F for 2 DHz. s stored a t for Tab gorking v mospher ied alue. e specifie	Z-40°C/Z at a temp ble 1. (T voltage) ic condit	Z+20°C. erature of he sum of Then the ions. The
4.7	life	Capacita <condi Accordi 105 °C = DC and product result sh <criter The cha I C t A C C C C C C C C C C C C C</criter </condi 	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria> aracteristic Leakage cur Capacitance an δ Appearance lition>	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within ± Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisfi initial va leakage o	μ F for 2 http://www.stored.ac. s stored a t for Tab yorking w mospher ied alue. specifie of electro	Z-40°C/Z at a temp ble 1. (T voltage) ic condit ed value. blyte.	Z+20℃. erature of he sum of Then the ions. The
4.7	life	Capacita <Condi Accordi $105 \degree C$ = DC and product result sh <Criter The cha I C t A <Condi The cha The cha	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria> aracteristic Leakage cun Capacitance ano Appearance lition> actions are the	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 5 hours rec g table: e followin Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 all be no ge applie	ther 1000 ed at 120 upacitor is le curren e rated w time at at ements. be satisf initial va 0% of the leakage of ed at a te	μ F for 2 http://www.stored.ac. s stored a t for Tab orking w mospher ied alue. specifie of electroc mperatur	Z-40°C/Z at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105	$\pm 2^{\circ}\mathbb{C}$ for
4.7	life	Capacita <Condi Accordi $105 \ ^{\circ}C =$ DC and product result sh <Criter The cha I C ta A <Condi The capa $100 \ ^{\circ}C =$	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria> aracteristic Leakage cum Capacitance can δ Appearance lition> acitors are the thouse of	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 5 hours rec g table: <u>e followin</u> Value in Within ± Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no ge applic ne capac	ther 1000 ed at 120 upacitor is le curren e rated w time at at ments. be satisfi initial va 0% of the leakage of ed at a te	μ F for 2 Hz. s stored a t for Tab rorking v mospher ied alue. specific of electro mperatur l be remo	Z-40°C/Z at a temp ole 1. (T voltage) ic condit ed value. olyte. re of 105 oved from	$2+20^{\circ}$ C. erature of he sum of Then the ions. The $\pm 2^{\circ}$ C for m the test
	life test Shelf	Capacita <Condi Accordi $105 \ C$ = DC and product result sh <Criter The cha I C L A C C L A C C C C C C C C	ance, $\tan \delta$, ition > ing to IEC6 ± 2 with DC d ripple peat t should be thould meet ria > aracteristic Leakage cum Capacitance ano Appearance lition > actions are the 8/0 hours. If ar and be all e connected	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within \pm Not more There sha is period th bilized at r	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of than 15 all be no ge applic the capac coom ter sistor(11	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the test d voltage
4.7	life test Shelf life	Capacita <Condi $Accordi 105 \ C =DC andproductresult sh<$ Criter The cha \boxed{I} C t A C T C T C C T C C T C C T C C T C C T C C T C C T C C C T C C T C C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C C T C D C T C D C T C D C D C T C D C D C D C D C D D C D D C D D D D D D D D	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be the hould meet ria> aracteristic Leakage cur Capacitance ano Appearance lition> actions are the 8/0 hours. If the connected for 30min.	, and impedan 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within \pm Not more There sha is period th bilized at r	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of than 15 all be no ge applic the capac coom ter sistor(11	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the test d voltage
	life test Shelf	Capacita <Condi Accordi $105 \ C$ = DC and product result sh <Criter The cha I C L A C C L A C C C C C C C C	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be the hould meet ria> aracteristic Leakage cur Capacitance ano Appearance Lition> actions are the 18/0 hours. If the connected for 30min.	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within \pm Not more There sha is period th bilized at r	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of than 15 all be no ge applic the capac coom ter sistor(11	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the test d voltage
	life test Shelf life	Capacita <Condi $Accordi 105 \ C =DC andproductresult sh<$ Criter The cha \boxed{I} C t A C T C T C C T C C T C C T C C T C C T C C T C C T C C C T C C T C C C T C C T C C T C C T C C T C C T C C T C C T C C T C C T C C C T C D C T C D C T C D C D C T C D C D C D C D C D D C D D C D D D D D D D D	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be the hould meet ria> aracteristic Leakage cur Capacitance ano Appearance Lition> actions are the 18/0 hours. If the connected for 30min.	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within \pm Not more There sha is period th bilized at r	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of than 15 all be no ge applic the capac coom ter sistor(11	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the test d voltage
	life test Shelf life	Capacita <Condi Accordi $105 \degree C$ = DC and product result sh <Criter The cha I C t A C T C T C C T C C T C C C T C C T C C C C C C C C	ance, $\tan \delta$, ition> ing to IEC6 ± 2 with DC d ripple peat t should be the hould meet ria> aracteristic Leakage cur Capacitance ano Appearance Lition> actions are the 18/0 hours. If the connected for 30min.	, and impedat 50384-4No.4. C bias voltage ak voltage sl tested after 10 the following shall meet th rrent e Change	Add 1.0 nce shall b 13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within \pm Not more There sha is period th bilized at r	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of than 15 all be no ge applic the capac coom ter sistor(11	ther 1000 red at 120 apacitor is le curren e rated w time at at ments. be satisficient be sat	μ F for 2 Hz. s stored a t for Tab yorking w mospher ied alue. specifie of electron l be remain for 4~8) with Γ	Z-40°C/2 at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1 D.C. rate	$\pm 2^{\circ}C$ for m the test d voltage

		<criteria></criteria>
		The characteristic shall meet the following requirements.
		Leakage currentValue in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change Within $\pm 25\%$ of initial value.
4.8	life	tan δ Not more than 150% of the specified value.
	test	Appearance There shall be no leakage of electrolyte.
		Remark: If the capacitors are stored more than 1 year, the leakage current may
		increase. Please apply voltage through about 1 k Ω resistor, if necessary.
		<condition></condition>
		Applied a surge voltage to the capacitor connected with a (100 \pm 50)/C _R (k Ω) resistor
		The capacitor shall be submitted to 1000 cycles, each consisting of charge of $30 \pm 5s$
		followed discharge of 5 min 30s.
		The test temperature shall be $15 \sim 35^{\circ}$ C.
		C _R :Nominal Capacitance (µ F) <criteria></criteria>
1.0	Surge	
4.9	test	Leakage current Not more than the specified value.
		Capacitance ChangeWithin $\pm 15\%$ of initial value.
		tanδ Not more than the specified value.
		AppearanceThere shall be no leakage of electrolyte.
		Attention:
		This test simulates over voltage at abnormal situation only. It is not applicable to such
		over voltage as often applied.
4.10	Vibration test	perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket.
		After the test, the following items shall be tested: Inner construction No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes. Appearance No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.

Version	01		8

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	11						
		<condition></condition>					
		-	The capacitor shall be tested under the following conditions:				
		Soldering temperature		: 245±3°C			
	Solderability	Dipping depth		: 2mm : 25±2.5mm	1_		
4.11	test	Dipping speed		: 25±2.5mm : 3±0.5s	/\$		
	test	Dipping time <criteria></criteria>		. 5±0.58			
				A minimum	n of 95% of the surface	being	
		Coating quality		immersed		8	
		<u> </u>		•			
		<condition></condition>	r chall h	a immersed into	\sim colder both at $260\pm$	5°C for 10 ±	
		Terminals of the capacitor					
		1 seconds or $400 \pm 10^{\circ}$ C for					
	_	Then the capacitor shall b for 1~2 hours before mea			emperature and norma	l humidity	
4.12	Resistance to solder heat	<pre><criteria></criteria></pre>	suremen	l.			
4.12	test	Leakage current		Not more than the	ne specified value.		
	test	Capacitance Change		Within $\pm 10\%$ o	•		
		tanδ			ne specified value.		
		Appearance			o leakage of electrolyte	2	
		Appearance		There shall be h			
		<condition></condition>					
		Temperature Cycle:Accor				shall be	
		placed in an oven, the con					
			emperatu	ire	Time		
		(1)+20℃			≤ 3 Minutes		
	Change of	(2)Rated low temperative			30 ± 2 Minutes		
4.13	temperature	(3)Rated high temper			30 ± 2 Minutes		
	test	(1) to (3)=1 cycle, to	tal 5 cyc	le			
		<criteria></criteria>	4 41				
		The characteristic shall m Leakage current		more than the s		1	
		tanð		more than the s			
		Appearance			akage of electrolyte.		
		**	The		akage of electrolyte.		
		<condition></condition>					
		Humidity Test: According to IEC60384-4	4No 4 12	methods canac	vitor shall be exposed f	500 ± 8	
		e		-	-		
		hours in an atmosphere of 90~95% R H .at 40 ± 2 °C, the characteristic change shall meet the following requirement.					
		<criteria></criteria>					
	Damp heat	Leakage current	Not me	more than the specified value.			
4.14	test	Capacitance Change	Within	$\pm 20\%$ of initi	al value.		
		tanδ			f the specified value.		
		Appearance	There	shall be no leaka	age of electrolyte.		
L	1						

Version	01	Page	9
	• -		-

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

4.15	Vent test	22.4 or less	th its polar ble is appli trent (A) 1 0 dangerous	ity reversed ed.	to a DC po	ower source. Then a
4.16	Maximum permissible (ripple current)	<condition>The maximum permissible right 120Hz and can be applied Table-1The combined value of D.C rated voltage and shall not received voltage and shall no</condition>	at maximu voltage and	im operating I the peak A	g temperatu	re

Version 01 Page 1

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
Heavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated .	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo com	pounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters

 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $tan\delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version)1		Page	12
---------	----	--	------	----

	GF SERIES					
(6) Wiring Near the Pressure Relief Vent						
	iring or circuit board paths above the pressure real dissolve the wire insulation and ignite.	elief vent. Flammable, high temperature gas				
(7) Circuit Board patterns Under the Capacitor						
Avoid circuit board runs under the capacito	r as electrolyte leakage could cause an electric	cal short.				
(8) Screw Terminal Capacitor Mounting						
	erminal side of the capacitor facing downward					
Tighten the terminal and mounting bracket	screws within the torque range specified in th	e specification.				
1.6 Electrical Isolation of the Capacitor						
Completely isolate the capacitor as follows	5.					
(1) Between the cathode and the case (except fo	r axially leaded B types) and between the ano	de terminal and other circuit paths				
(2) Between the extra mounting terminals (on T	types) and the anode terminal, cathode terminal	nal, and other circuit paths.				
1.7 The Product endurance should take the sam	nla as the standard					
1.7 The Product endurance should take the sam	pie as the standard.					
1.8 If conduct the load or shelf life test, must be	e collect date code within 6 months product	ts of sampling.				
1.9 Capacitor Sleeve						
1	nded for marking and identification purposes	and is not meant to electrically insulate the				
capacitor.	need for marining and reconstruction parpooes.					
1	into solvents such as toluene or xylene, and the	nen exposed to high temperatures.				
	CAUTION!					
Always consider sefety when designing a	quipment and circuits. Plan for worst case fail	ure modes such as short circuits and onen				
circuits which could occur during use.	quipment and circuits. Plan for worst case fan	ure modes such as short circuits and open				
	n devices to allow safe failure modes					
	(1) Provide protection circuits and protection devices to allow safe failure modes.(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.					
(2) Design redundant of secondary circuits	where possible to assure continued operation	in case of main circuit failure.				
2. Capacitor Handling Techniques						
2.1 Considerations Before Using						
(1) Capacitors have a finite life. Do not reuse o						
(2) Transient recovery voltage may be generate	d in the capacitor due to dielectric absorption.	If required, this voltage can be discharged				
with a resistor with a value of about $1k\Omega$.						
(3) Capacitors stored for long periods of time n rated voltage in series with a resistor of app		is can be corrected by gradually applying				
(4) If capacitors are dropped, they can be dama		dropped capacitors				
(4) In capacitors are diopped, they can be dama(5) Dented or crushed capacitors should not be						
result.	used. The sear integrity can be compromised	and loss of electrolyte / shortened me can				
2.2 Consister Insertion						
2.2 Capacitor Insertion(1) Verify the correct capacitance and rated volt	age of the capacitor					
(1) Verify the correct capacitance and rated von (2) Verify the correct polarity of the capacitor b						
(3) Verify the correct hole spacing before insert		stress on the terminals				
(4) Ensure that the auto insertion equipment lea						
(4) Ensure that the auto insertion equipment lear capacitor.	a entirening operation does not succes the capat	enter reads where they enter the sear of the				
1	g pressure can cause high leakage current, sh	ort circuit, or disconnection.				

- 2.3 Manual Soldering
- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version ()1	Page	13
-----------	----	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60° C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471 EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC TER330M50GM 477KXM035MGBWSA B43827A1106M8