

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS **PRODUCT SPECIFICATION**

規格書

CUSTOMER :

(**客戶**): 志盛翔

DATE :

(日期): 2024-06-07

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GK $16V2700\mu F(\varphi 12.5X18.5)$
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	ER
PREPARED (拟定)	CHECKED (审核)
莫璐瑶	付婷婷

CUSTOMER							
APPROVAL	SIGNATURE						
(批准)	(签名)						

ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES

SAMXON

		SPECIFIC				ALTERN	ERNATION HISTORY RECORDS			
Dav	Data	GK SI			Contonto			A mmmoxrm		
Rev.	Date	Mark	Pa	nge	Contents	Purpose	Drafter	Approver		
	Version		01				Page 1			
	version		01				Page 1			

	MAN YUE ELECTR COMPANY LIMI				ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES				SAMXON					
	Table 1 Product Dimensions and Characteristics Unit: mm													
Table	Safety vent for $\geq \varphi 6.3$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow													
N o.	SAMXON Part No.	WV (Vdc)	Cap. (μF)	Cap. tolerance	Temp. range(°C)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105℃ 100KHz (mA rms)	Impedance at 25°C 100kHz (Ωmax)	Load lifetim e (Hrs)	Dimer (m D×A	nsion m) F	фd	Slee ve
1	EGK278M1CI1HRR**P	16	2700	-20%~+20%	-40~105	0.18	432	2282	0.021	5000	12.5X18.5	5.0	0. 6	PET

2

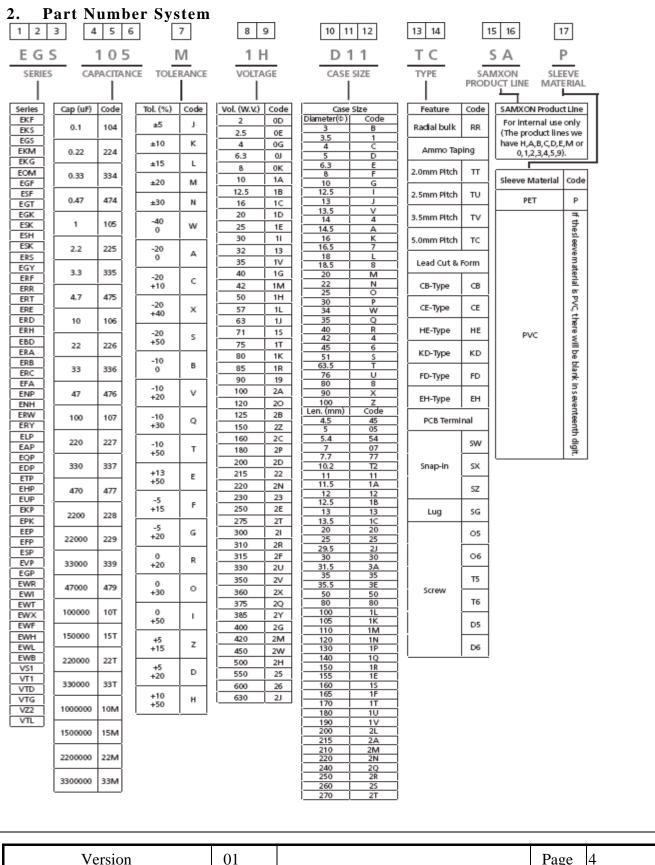
Page

Version

01

SAMXON

C O N T E N T S	Sheet
. Application	4
. Part Number System	4
. Construction	5
. Characteristics	
	5~10
1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
Lakage current $tan \delta$	
4.5 Terminal strength	
4.6 Temperature characteristic	
1.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
1.11 Solderability test	
1.12 Resistance to solder heat	
1.13 Change of temperature	
4.14 Damp heat test 4.15 Vent test	
16 Maximum permissible (ripple current)	
. List of "Environment-related Substances to be Controlled ('Controlle Substances')"	d 11
Attachment: Application Guidelines	12~15


Version	01		3
	• -		-

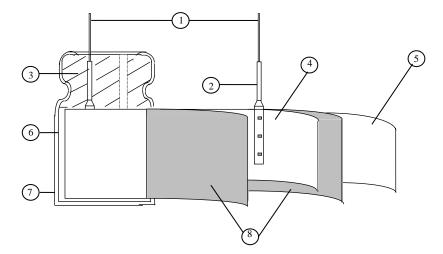
ELECTROLYTIC CAPACITOR **SPECIFICATION** GK SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Version


Page

ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01	Page	5

ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES

Tabl	e 2									
	ITEM				PERFO	RMANC	CE			
	Rated voltage (WV)									
4.1		WV (V.DC)	6.3	10	16	25	35]		
	Surge voltage (SV)	SV (V.DC)	8	13	20	32	44			
4.2	Nominal capacitance (Tolerance) Leakage current	Measuring F Measuring V Measuring T <criteria></criteria> Shall be with <condition></condition> Connecting t minutes, and	Shall be within the specified capacitance tolerance. Condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in series for 2 minutes, and then, measure Leakage Current. Criteria>							
4.4	tan δ	See 4.2, Nor < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria> Refer to Table 1</criteria></condition>							
4.5	Terminal strength	Refer to Table 1 <condition>Tensile Strength of TerminalsFixed the capacitor, applied force to the terminal in lead out direction for 10 ± 1 seconds.Bending Strength of Terminals.Fixed the capacitor, applied force to bent the terminal $(1~4 \text{ mm from the rubber})$ for 90° within 2~3 seconds, and then bent it for 90° to its original position within 2~3 seconds.Diameter of lead wire Tensile force NBending force N(kgf)0.5mm and less 5 (0.51)2.5 (0.25)Over 0.5mm to 0.8mm10 (1.0)5 (0.51)Criteria>No noticeable changes shall be found, no breakage or looseness at the terminal.</condition>							r) for 2~3	

Version

01

Page 6

ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES

		<condition></condition>							
		STEP	Testin	g Temperat	ure(°C)			Time	
		1		20 ± 2		Time	to reach	thermal of	equilibrium
		2		$-40(-25) \pm$	3				equilibrium
		3		20 ± 2		Time	to reach	thermal e	equilibrium
		4		105 ± 2		Time	to reach	thermal e	equilibrium
		5		20 ± 2		Time	to reach	thermal of	equilibrium
		<criteria></criteria>							
		-					4.4The	leakage c	urrent measured
	Temperature	shall not more			-				
	characteristi				the lin	nit of Iter	n 4.4The	eleakage	current shall no
4.6	cs	more than the	-			(_)	-111	1 6	h 1 f - 1
		c. In step 2, A following tab		25 C), imp	edance	(Z) ratio	snall not	exceed t	he value of the
		Working Volta		6.3	10	16	25	35	1
		Z-25°C/Z+2		2	2	2	23	2	-
		L-23 C/L+2	200	Z	Z	Z	Z	Z	
4.7	Load life test	$105 \ \ C \pm 2 \ \ with hours \ . (The voltage) There atmospheric c $	IEC60384 th DC bias sum of D n the pro- conditions ristic shall ge current itance Cha- rance	s voltage pl C and ripp oduct show . The result meet the f V inge W	us the r le peak ild be should ollowir alue in /ithin =	ated ripp voltage tested a meet the	le curren shall not fter 16 e followin ements. be satisf initial v. 0% of the	t for Tab c exceed hours re ng table: ied alue. e specifie	
4.8	Shelf life	1000+48/0 ho chamber and shall be conn	are then s ours. Follo be allowe ected to a omin. Afte	wing this p d to stability a series lim	beriod t ized at niting re	he capacit room ten esistor(1)	itors shal nperature x±100 Ω	1 be removed tor 4~8 () with I	The of $105 \pm 2^{\circ}$ C for the tend from the tend from the tenders. Next the D.C. rated voltation of them, tested to the test the test the test of test of the test of tes

Version

01

Page 7

SAMXON

		<criteria></criteria>	
		The characteristic shall meet	
		Leakage current	Value in 4.3 shall be satisfied
1.0	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life	tan δ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors are	stored more than 1 year, the leakage current may
		increase. Please apply voltag	e through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submir followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance (<criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	 be 15~35°C. μ F) Not more than the specified value. Within ±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte. ge at abnormal situation only. It is not applicable to such
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter g in place with a bracket. 4mm or les 4mm or les Criteria> After the test, the following in Inner construction	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION GK SERIES

	<u>г</u>							
		<condition></condition>	. 1 1 4 6 11 .					
		The capacitor shall be tes	•	conditions: Sn-Cu solder				
		Soldering temperature Dipping depth	: 250±3°C : 2mm	: 250±3°C				
	Solderability	Dipping speed	: 25±2.5mm					
4.11	test	Dipping speed Dipping time	: 3±0.5s	1/5				
		<criteria></criteria>	. 5±0.55					
			A minimur	n of 95% of the surface be	eing			
		Coating quality	immersed		U			
		a 144						
		<condition></condition>	aball ba immanad int	a colder both at $260\pm5^\circ$	$Cf_{out} 10 \perp$			
		Terminals of the capacitor						
		1 seconds or $400 \pm 10^{\circ}$ C for	-					
		Then the capacitor shall b		temperature and normal h	numidity			
	Resistance to	for 1~2 hours before mea	surement.					
4.12	solder heat	<criteria></criteria>		1 'C' 1 1	7			
	test	Leakage current		he specified value.	_			
		Capacitance Change	Within $\pm 10\%$ of	of initial value.				
		tan δ	Not more than t	he specified value.				
		Appearance	There shall be n	o leakage of electrolyte.				
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
		<condition></condition>	ding to IEC60294 4No	17 methods consister sh	all ba			
		Temperature Cycle:According to IEC60384-4No.4.7methods, capacitor shall be placed in an oven, the condition according as below:						
		Temperature Time						
		(1)+20℃	≤ 3 Minutes					
4.10	Change of	(2)Rated low temper	30 ± 2 Minutes					
4.13	temperature test	(3)Rated high temperature (+105 °C) 30 ± 2 Minutes						
	test	(1) to (3)=1 cycle, total 5 cycle						
		<criteria></criteria>						
		The characteristic shall m						
		Leakage current tan δ	Not more than the s	•				
				ot more than the specified value. here shall be no leakage of electrolyte.				
		Appearance <condition></condition>		cakage of electrolyte.				
		Humidity Test:						
		According to IEC60384-4	No.4.12 methods, capa	citor shall be exposed for	500+8			
		hours in an atmosphere of	-	-				
		meet the following requirement.						
		< <u>Criteria></u>						
4.1.4	Damp heat	Leakage current	Not more than the spe	Not more than the specified value.				
4.14	test	Capacitance Change	Within $\pm 20\%$ of init	Within $\pm 20\%$ of initial value.				
		tan δ	Not more than 120% of	of the specified value.				
		Appearance	There shall be no leak	age of electrolyte.				

Version

01

ELECTROLYTIC CAPACITOR **SPECIFICATION** GK SERIES

4.15	Vent test	<condition> The following test only apply with vent. D.C. test The capacitor is connected v current selected from below <table 3=""> Diameter (mm) DC C 22.4 or less Over 22.4 <criteria> The vent shall operate with m pieces of the capacitor and/or</criteria></table></condition>	with its pola table is app urrent (A) 1 10 to dangerou	arity reverse blied.]	ed to a DC	power so	ource. Then a
4.16	Maximum permissible (ripple current)	<condition> The maximum permissible at 120Hz and can be applied Table-1 The combined value of D.0 rated voltage and shall not Frequency Multipliers: Freq. Coefficient (Hz) Cap.(μF) 100~180 220~560 680~1800 2200~3900</condition>	ed at maxim C voltage and reverse vo	num operati	ng tempera	ture	ot exceed the k
		Temperature Coeffici Capacitor ambient temperature Temperature coefficient Actural rms ripple Rated rms max.ripple	ient: ≤ 65°C 1.73	75°C 1.73	85°C 1.73	95℃ 1.41	105°C
	Version	01				Page	10

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances			
	Cadmium and cadmium compounds			
Heavy metals	Lead and lead compounds			
Theavy metals	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
	Polybrominated biphenyls (PBB)			
Brominated	Polybrominated diphenylethers(PBDE) (including			
organic	decabromodiphenyl ether[DecaBDE])			
compounds	Other brominated organic compounds			
Tributyltin comp	ounds(TBT)			
Triphenyltin con	npounds(TPT)			
Asbestos				
Specific azo con	pounds			
Formaldehyde				
Beryllium oxide				
Beryllium copp	er			
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)			
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)			
Perfluorooctane	sulfonates (PFOS)			
Specific Benzotr	iazole			

01

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $tan\delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

(5) Pulse Current

The pulse current cannot exceed 10 times the rated ripple current at 120Hz.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

	.1 1			
A note in the circuit board uncerty und	er me sear ven	rocation is required to anow proper release or pressure.		
Version	01		Page	12

(6) Wiring Near the Pressure Relief Vent

- Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
- (7) Circuit Board patterns Under the Capacitor
 Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
- (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards.

Tighten the terminal and mounting bracket screws within the torque range specified in the specification.

1.6 Electrical Isolation of the Capacitor

Completely isolate the capacitor as follows.

- (1) Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths
- (2) Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
- 1.7 The Product endurance should take the sample as the standard.
- 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
- 1.9 Capacitor Sleeve

The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor.

The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.

CAUTION!

Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use.

(1) Provide protection circuits and protection devices to allow safe failure modes.

(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k\Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $lk\Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- (1) Verify the correct capacitance and rated voltage of the capacitor.
- (2) Verify the correct polarity of the capacitor before inserting.
- (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
- (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

- 2.3 Manual Soldering
- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01	Page	13

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result. Xylene
 - : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinvl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

Version	01	Page	14
---------	----	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01	Page	15

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Man Yue manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 511D336M250EK5D 052687X ECE-A1CF471 EKXG451ELL820MM30S 686CKR050M NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N UPL1A331MPH NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA NEV330M63EF NEV4700M35HI NEV4.7M100BA NEV47M16BA NEV47M50CB-BULK NEVH1.0M350AB NEVH2.2M160AB NEVH3.3M350BC TER330M50GM 477KXM035MGBWSA B43827A1106M8